Что такое параметры тиля смолла

Параметры Тиля – Смолла. а именно что такое: fs, qes, qms, qts, vas

52afb64s 100

«Параметры Тиля — Смолла» — это набор электроакустических параметров, который определяет поведение динамической головки (динамика) в области низких частот. Эти параметры публикуются в спецификациях производителями как справочные для производителей акустических систем. Большинство параметров определяются только на резонансной частоте динамика, но в общем применимы во всем диапазоне частот, в котором динамик работает в поршневом режиме.

Fs — Резонансная частота динамической головки.
Qes — Электрическая добротность на частоте Fs.
Qms — Механическая добротность на частоте Fs.
Qts — Полная добротность головки на частоте Fs.
Vas — Эквивалентный объем (объем воздуха (в м?), который, при воздействии на него поршня площадью Sd, обладает гибкостью, равной гибкости подвеса).

Рассмотрим каждый параметр по отдельности:

Fs — Резонансная частота динамической головки.

Можно сказать что это условия при которых все движущиеся части динамической системы синхронизированы или входят в резонанс. Резонанс довольно сложно объяснить, проще понять это явление если попросту сказать что очень тяжело получить с помощью динамика частоту ниже частоты его основного резонанса.

К примеру грубо говоря динамик с частотой основного резонанса (fs: Driver free air resonance) = 60 Hz (Гц), не будет воспроизводить частоту в 35 Hz (Гц) очень хорошо.

Динамик же с частотой основного резонанса (fs: Driver free air resonance) = 32 Hz (Гц), будет воспроизводить частоту в 35 Hz (Гц) довольно уверенно, если ваше акустическое оформление будет настроено на воспроизведение столь низких частот. Эти два объяснения очень хорошо подходят для выбора динамика для оформления ФИ (фазинвертер), ЗЯ (Закрытый Ящик) и band-pass (банд пасс). В случае рупорного сабвуфера этот параметр не столь критичен, так как там динамик скорее используется как поршень, а частоту создает само оформление сабвуфера в виде рупора. Резонансная частота – это частота резонанса динамика без какого-либо акустического оформления. Она так и измеряется – динамик подвешивают в воздухе на наибольшем расстоянии от окружающих предметов, так что теперь его резонанс будет зависеть только от его собственных характеристик – массы подвижной системы и твердости подвески.Существует мысль, что чем ниже резонансная частота, тем лучше выйдет сабвуфер. Это верно только частично, для некоторых конструкций лишняя низкая частота резонанса – препятствие. Для ориентира: низкая – это 20 – 25 Гц. Ниже 20 Гц – редкость. Выше 40 Гц – считается высокой, для сабвуфера.

Qms — Механическая добротность на частоте Fs

Qms: Driver mechanical Quality
Qms: Механическая добротность динамика

Qms — механическая добротность динамика, дает представление о всех механических параметрах динамика вместе. Это выражение контроля создаваемого жесткостью подвеса.

Qts — Полная добротность головки на частоте Fs

Qts: Driver total Quality.
Qts: Общая добротность динамика

Иногда в этом параметре опускается буква Q, так как Это сокращение слова (качество — добротность). Итак Qts это общая добротность динамика, которая включает в себя электрическую и механическую добротность. Qts — дает нам понять, насколько сильна моторная (магнитная) система динамика. Динамики с малой общей добротностью системы (около 0,20( будут иметь большой магнит и смогут двигать диффузор динамика с большой силой. Это делается для тугих (жестких) динамиков. Динамик с Qts = 0,45 будут иметь меньший магнит и соответственно меньшую силу для движения диффузора. Таким образом низкое значение Qts дает сильный (жесткий, плотный) и острый звук, но с малым весом или низким басом и большим Qts получается протяжный и сильный звук который дает вам очень много низкочастотного давления. Остерегайтесь динамиков с большим Qts, более 0,6. Для нормальной работы таких динамиков вам потребуются огромные акустические оформления (короба), так как с нормальными (реально разумными) размерами акустического оформления вы не получите от этих динамиков много басовой составляющей. Такие динамики лучше использовать в задней полке вашего авто, где они получат много свободного пространства за своей спиной. Qts (общая добротность динамика) состоит из електрической добротно Q (Qes) и механической добротности Q (Qms)

Рассчитать Qts можно как 1/Qts = 1/Qes + 1/Qms

Qms рассчитывается как

Qts это всего лишь произведение Qes и Qms и понимания что означают эти величины, очень важно при конструировании акустических систем.
Qts Vas и fs все что нужно для вычисления размеры вашего будущего акустического оформления (короба), со временем когда вы перейдете на более профессиональный уровень конструирования, такие величины как Qes и Qms станут для вас необходим условиям для последующей работы.

Добротность – не качество изделия, а соотношение упругих и грузлых сил, которые существуют в подвижной системе динамика вблизи частоты резонанса. Подвижная система динамика во много почему то же что и подвеска автомобиля, где есть пружина и амортизатор. Пружина создает упругие силы, то есть накапливает и отдает энергию в процессе колебаний, а амортизатор – источник грузлого сопротивления, оно ничего не накапливает, а поглощает и рассеивает в виде тепла. То же происходит при колебаниях диффузора и всего, что к нему прикреплено. Высокое значение добротности значит, что преобладают упругие силы. Это – как автомобиль без амортизаторов. Достаточно наехать на камешек и колесо начнет прыгать, ничем не сдерживаемое. Прыгать на той же резонансной частоте, что свойственная этой колебательной системе. Относительно громкоговорителя это означает выбросы частотной характеристики на частоте резонанса, тем больший, чем выше полная добротность системы.Наивысшая добротность, измеряемая тысячами, – у звука, что в итоге ни на какой частоте, кроме резонансной звучать не желает, благо еще, что этого от него никто и не требует.Популярный метод диагностики подвески машины покачиванием – не что другое как измерение добротности подвески «кустовым» способом. Если теперь привести подвеску в порядок, то есть прицепить параллельно пружине амортизатор, накопленная при сжатии пружины энергия уже не вся вернется назад, а частично будет затеряна амортизатором. Это – снижение добротности системы. Теперь опять вернемся к динамику. Ничего, что мы сюда ходим? Это, говорит что, с пружиной у динамика все, вроде бы, ясно. Это – подвеска диффузора. А амортизатор? Амортизаторов – целых два, что работают параллельно. Полная добротность динамика состоит из двух: механической и электрической.Механическая добротность определяется главным образом выбором материала подвеса, причем в основном – шайбы, которая центрирует, а не внешнего гофра, как иногда думают. Больших потерь здесь обычно не бывает и взнос механической добротности в полной мере не превышает 10 – 15%. Основной взнос принадлежит электрической добротности.Самый твердый амортизатор, который работает в колебательной системе динамика, – это ансамбль из звуковой катушки и магниту. Будучи по своей природе электромотором, он как и годится мотору, может работать как генератор и именно этим и занятый вблизи частоты резонанса, когда скорость и амплитуда перемещения звуковой катушки – максимальны.Двигаясь в магнитном поле, катушка производит ток, а нагрузкой для такого генератора служит исходное сопротивление усилителя, то есть практически – нуль. Выходит такой же электрический тормоз, которым поставляются все электрички. Там тоже при торможении тяговые двигатели вынуждают работать в режиме генераторов, а нагрузка их – батареи тормозных сопротивлений на крыше. Величина производимого тока будет, природнее, тем более, чем сильнее магнитное поле, в котором двигается звуковая катушка. Выходит, что чем больше магнит динамика, тем ниже, при других ровных, его добротность. Но, конечно, поскольку в формировании этой величины принимают участие и длина проведения обмотки, и ширина зазора в магнитной системе, окончательный вывод только на основании размера магниту было бы делать преждевременно. А предыдущий – почему нет?- Базовые понятия – рядом считается полная добротность динамика меньше 0,3 – 0,35; высокой – больше 0,5 – 0,6.

Vas — Эквивалентный объем (объем воздуха (в м?), который, при воздействии на него поршня площадью Sd, обладает гибкостью, равной гибкости подвеса).

Vas: Volume of air equal to the driver compliance.
Vas: Эквивалентный объем динамика

Он дает понятие о том насколько тугой подвес у динамика. Значение дается в литрах или в кубических дюймах. Есть много параметров влияющих на Эквивалентный объем, так что мы не можем сказать что большое значение параметра Vas лучше. На еквивалентный обхем влияет подвес динамика, размер диффузора и даже температура воздуха. Это самый трудно определяемы параметр. Его значимость труднее всего оценить.Большинство современных головок громкоговорителей основано на принципе «акустического подвеса». Концепция акустического подвеса заключается в установке динамика в такой объем воздуха, упругость которого сравнимая с упругостью подвеса динамика. При этом выходит, что в параллель к уже имеющейся в подвеске пружине поставили еще одну. Эквивалентным объем будет при этом такой, при котором новая пружина, которая появилась, равняется по упругости той что была. Величина эквивалентного объема определяется твердостью подвеса и диаметром динамика. Чем мягче подвес, тем более будет величина воздушной подушки, присутствие которой начнет тревожить динамик.То же происходит с изменением диаметра диффузора. Большой диффузор при том же сдвиге будет сильнее сжимать воздух внутри ящика, тем самым испытывая большую соответствующую силу упругости воздушного объема. Именно это обстоятельство чаще всего определяет выбор размера динамика, исходя из имеющегося объема для размещения его акустического оформления. Большие диффузоры создают предпосылки для высокой отдачи сабвуфера, но требуют и больших объемов. У эквивалентного объема интересны семейные связки с резонансной частотой, без осознания которых легко промахнуться. Резонансная частота определяется твердостью подвеса и массой подвижной системы, а эквивалентный объем – диаметром диффузора и той же твердостью.
В итоге возможна такая ситуация: допустимо, есть две динамика одинакового размера и с одинаковой частотой резонанса. Но только в одно из них это значение частоты вышло в результате тяжелого диффузора и жесткой подвески, а в другое – наоборот, легкого диффузора на мягком подвесе. Эквивалентный объем у такой парочки при всем внешнем сходстве может различаться очень существенно, и при установке в тот же ящик результаты будут драматично разными.

Источник

Параметры Тиля — Смолла: что скрыто за картами. Журнал «Автозвук»

Сохранить и прочитать потом —

Какие карты имеются в виду — понятно, надеюсь. Те, что мы сдали сами себе в прошлом выпуске, — три магические карты Тиля — Смолла. Так вроде теперь всё разъяснилось, что там может скрываться? Производители всего мира вняли мирной инициативе двух выдающихся акустиков, стали прикладывать к своим изделиям параметры, получившие имена этих же двух выдающихся (правда, иногда забывают), так что теперь берём готовые цифры и.

speaker0.eps

Четыре конструктивных, производственных характеристики динамика, из которых получаются потом параметры Тиля — Смолла

speaker1.eps

Резонансная частота определяется массой подвижной системы и жёсткостью подвеса, какова площадь диффузора и какой у него привод, этому параметру и дела нет. Цветные стрелки показывают, как будет меняться параметр при росте той или иной конструктивной величины

speaker2.eps

А эквивалентному объёму нет дела до массы подвижной системы: площадь диффузора и жёсткость его подвеса — вот всё, что определяет величину Vas

speaker3.eps

Добротности динамика есть дело до всего. Масса и жёсткость тянут её вверх, а мотор, превратившийся в электрический тормоз — вниз

speaker4.eps

Если просто взять и утяжелить диффузор, снизится резонансная частота, повысится добротность и упадёт чувствительность

speaker5.eps

Если сделать более жёсткой подвеску, Vas упадёт, но повысится резонансная частота. И — опять добротность, ведь упругих сил в системе стало больше

speaker6.eps

Если, ничего не трогая, сделать более мощным привод диффузора, возрастёт чувствительность и снизится добротность

speaker7.eps

Чтобы удержать Fs и Qts на требуемых значениях, но снизить требования к объёму, приходится одновременно утяжелять диффузор, делать более жёстким подвес и форсировать привод. Расплата, тем не менее, неизбежна: чувствительность таких головок оказывается невысокой. Вы только что присутствовали при рождении автомобильного сабвуфера

Над практической басовой акустикой висит тяжкое проклятие, снять которое, главное, не удастся никогда и никакими заклинаниями, надо научиться с этим жить. Есть три характеристики басовой акустики, определяющие её достоинства. Опять три, так уж получается, и не только в акустике. Это:
— Глубина баса, то есть нижняя частотная граница
— Чувствительность, или к.п.д.
— Компактность оформления
Идеальной акустикой будет такая, которая будет давать МНОГО баса, НИЗКОГО баса и в МАЛЕНЬКОМ ящике. Ну чем не предел мечтаний? Задача физики, однако, обламывать крылья мечтам. Проклятие как раз в том, что ни одна из этих характеристик не может быть качественно улучшена без ухудшения одной или обеих остальных. Возьмём какую-нибудь акустику с определённым балансом достоинств и попробуем что-нибудь в ней улучшить. Например, резко повысить чувствительность, а остальное пусть останется таким же. Дудки — получится акустика профессионального назначения, для озвучивания залов. С рекордными значениями чутья, но без глубоких басов и/или требующая огромных корпусов. Вернём на место глубокий бас — и убедимся: чувствительность упала, объём по-прежнему требуется немалый. Пример — домашняя акустика: часто напольные и полочные колонки одной серии различаются, главным образом, нижней граничной частотой. Ну и объёмом, разумеется. Поборемся за компактность, не поступаясь глубокими басами, и чувствительность проваливается иногда самым катастрофическим образом. Это как раз наш случай, автомобильный. Наши сабвуферы от таких же по калибру, используемых в pro audio, по чувствительности отличаются иной раз на 10 — 12 дБ, а это означает, что для создания одного и того же звукового давления (при прочих равных условиях) на «не наш» динамик достаточно подать 1 Вт, а «нашему» надо 10. «Не нашему» 10 — «нашему» 100. «Не нашему» 100 — нашему кирдык.

И ЧТО? ВОТ ДАЖЕ ИНТЕРЕСНО, что? Можно так: подставляем в программу для расчёта сабвуферов, которых теперь хоть пруд пруди, а уж она нам всё расскажет — куда ставить да как сыграет. Но есть часть населения, которая иногда задаётся вопросом: «А как это сделано?» Ведь и параметры Тиля — Смолла не с неба свалились. Они собраны из других деталей, которыми раньше инженеры-акустики пользовались в исходном, разобранном состоянии. Если упомянутый чуть выше вопрос свойственен вашей натуре, продолжайте читать, попытаюсь пролить свет.

Параметры бывают конструктивные и неконструктивные. Это не достоинство или недостаток, это — свойство. Для первых есть точный рецепт, как их добиться. Вторые получаются в результате совместной работы первых. Очень часто в технике оказывается, что конструктивные параметры абсолютно необходимы при изготовлении устройства, но страшно неудобны, когда надо оценить результаты работы готового продукта. Приведу пример.

На автомобильном заводе нет таких станков, на которых были бы рукоятки, например, «максимальная скорость». Или «время разгона до 100». Или «тормозной путь на сухом асфальте». У автомобилестроителей в ходу совсем иные показатели: диаметр того, сечение этого, масса третьего, упругость четвёртого, и так до бесконечности. Именно это содержится в чертежах, именно на это настраиваются станки. А теперь предположим, что вам предложили выбрать автомобиль по этим данным. Вот вам машина, диаметр цилиндра такой-то (даже с допуском плюс-минус сколько-то сотых миллиметра), вот гидравлическое сопротивление впускного коллектора, а вот — момент инерции коленчатого вала. Вам подходит? Нет, скажете вы, будьте любезны хотя бы максималку, от нуля до сотни и тормозной путь, чтобы хоть было с чем сравнить. Но получается, что цифры инженеров вам не очень нужны, а по вашим эти же инженеры не берутся сделать автомобиль. Вот и «у птичек точно так же».

Динамик по своей схеме — устройство предельно примитивное. По схеме, не по тонкостям взаимодействия с окружающей средой и тем более — с человеческим слухом. Это — всего лишь масса (диффузор), подвешенная на пружине (подвес), к массе прикреплён мотор, состоящий из катушки (звуковой) и постоянного магнита (магнит он и есть магнит). Всё остальное — подробности. Все параметры динамика, определяющие его работу на низких частотах, так или иначе сидят здесь, но расселись они не самым очевидным образом. И на заводе по производству динамиков тоже нет волшебных станков с рукоятками Fs, Vas и Qts, до этого наука не дошла. Зато там можно сделать диффузор с определёнными размерами и массой, детали подвеса с определённой упругостью, катушку с известным сопротивлением и магнит с определённой силой.

Пока Тиль и Смолл не опубликовали свою «энциклику», инженеры-акустики всего мира при расчётах акустических характеристик пользовались теми же параметрами динамиков, что и при их производстве. Или почти теми же, получившими название «электроакустические параметры», в отличие от именных, Тиля и Смола. Так делали многие годы, с номограммами и формулами, но было это почти так же муторно, как пытаться рассчитать время пути на дачу, имея полный комплект конструкторской документации на автомобиль, но не зная важнейших его ездовых характеристик.

Величие, не побоюсь этого слова, двух классиков заключалось в том, что они отважились предложить заменить параметры, прямо связанные с конструкцией динамика, на другие, связанные с ней довольно опосредованно и неочевидно.

Разберём динамик на те немногие части, из которых он состоит и про которые, по отдельности, можно всё довольно легко узнать. Только разбирать надо в правильной последовательности, чтобы дров не наломать. Пока динамик ещё не раздербанили, узнаем гибкость подвеса. Это несложно: положить на диффузор груз и измерить, насколько он под весом этого груза просел. Потом поделить просадку на массу груза и получить то, что называется гибкостью подвеса (Cms, измеряется в миллиметрах на Ньютон). Теперь можно ломать. Отделяем диффузор вместе со звуковой катушкой, то есть то, что в не разломанном на части динамике колеблется, линейкой выясняем диаметр диффузора, калькулятором — площадь, весами — массу. У звуковой катушки мы измерим длину провода, потраченного на её намотку. А у освобождённого теперь магнита измерим индукцию в зазоре, есть такие приборы, называются теслометры, потому что результат выдают в единицах, названных по имени чудесного сербского физика Николы Теслы. Две последние величины, если их не мешкая перемножить друг на друга (по отдельности они малополезны), называются силовым фактором динамика, обозначается так же, как и вычисляется, BL, то есть индукция (мощность магнитного поля, грубо говоря) на длину провода, находящегося в этом поле. «Силовой фактор» потому так называется, что BL — это своего рода заготовка для определения силы, действующей на диффузор при подаче тока в катушку. Сила, действующая на проводник с током в магнитном поле, в пределах гимназического курса, равна B x I x L, то есть достаточно силовой фактор помножить на ток, как фактор превращается в реальную силу. В числе базовых параметров Тиля — Смолла силового фактора нет, а величина эта — архиважная, в ней, действительно, вся сила динамика.

Зная всё это, попробуем без формул, на качественном уровне, попытаться понять, какими окажутся параметры динамика, те самые, «ездовые», необходимые нам для расчёта и моделирования его работы. И поймём, в каком трудном положении находятся разработчики акустики.

Первый и главный параметр динамика — резонансная частота Fs. Главный, потому что, очень сильно упрощая, можно сказать: динамик излучает только выше своей резонансной частоты. Упрощая чуть меньше, скажем так: ниже резонансной частоты интенсивность звукового излучения динамика быстро падает. Так вот: из всех параметров отдельных частей распатроненного динамика резонансная частота зависит только от двух: массы подвижной системы и гибкости подвеса. Ни до площади диффузора, ни до стати магнита ей и дела нет. Чем больше масса и чем мягче подвес (больше величина просадки при одном и том же усилии, приложенном к диффузору), тем резонансная частота ниже. А-а-тлично, говорим мы, вообразив себя (на время, потом сами не захотите) конструкторами динамика. Диффузор — ладно, он должен быть всё-таки достаточно прочным, значит, масса у него какая-то есть. Теперь сделаем мягкий-мягкий подвес (большую-большую величину Cms), и у нас будет резонансная частота, какую захотим, хоть 15 Гц, будет играть всё, и даже с запасом. Ну, оставим пока за скобками вопрос, всегда ли нужна такая низкая резонансная частота, вы и без этого уже попали. Потому что другой из судьбоносных параметров, эквивалентный объём Vas, тоже зависит только от двух конструктивных характеристик, но уже от иных.

Эквивалентному объёму тоже нет дела до магнита, катушки и протекающего через неё тока, хоть вовсе их оторвать, как мы делали при разборке динамика. Vas зависит только и исключительно от площади диффузора (чем больше Sd, тем больше Vas) и гибкости подвеса (чем мягче подвес, то есть больше Cms, тем снова больше). Это — единственный параметр из тройки Тиля — Смолла, который при некотором навыке можно, пусть очень грубо, оценить голыми руками. Во всяком случае, в сравнении двух динамиков одинакового калибра. Нужны именно руки: эквивалентный объём будет меньше у того из двух, у кого сильнее сопротивляется диффузор при нажатии на него. Поскольку площадь диффузора одна и та же, а кроме неё и упругости подвеса, Vas не зависит ни от чего, что в нашей власти.

Масса, обратите внимание, здесь уже ни при чём. А теперь смотрите, что получилось. Гибкость совсем недавно вы сами выбрали очень высокую. Эквивалентный объём получился огромный, а он самым существенным образом определяет величину необходимого объёма акустического оформления любого типа. Что будем делать? Предприимчивый человек тут сообразит: раз Vas от массы не зависит, схитрим — сделаем диффузор потяжелее, а подвес — пожёстче, итог для резонансной частоты будет тот же самый, одно скомпенсирует другое. А эквивалентный объём уменьшится, он зависит только от гибкости. Могу вас обрадовать и огорчить одновременно. Огорчить — потому что вы не первый, кто до этого додумался. Перед вами в очереди за авторским вознаграждением стоят практически все производители автомобильной басовой акустики. А обрадовать — тем, что по находчивости вы им не уступаете. Получается, есть универсальное решение? Делаем дико тяжёлый диффузор, страшно жёсткий подвес, получаем (при той же Fs) ужасно маленький эквивалентный объём, и дело в шляпе. Но на деле всё будет как раз дико, страшно и ужасно.

Это можно было и предвидеть, при вашей-то сообразительности. Не бывает в реальном мире таких простых и, главное, бесплатных решений. Динамик-то должен играть, совершать некоторое полезное действие, а значит, у него должен быть пристойный коэффициент этого полезного действия, более привычно измеряемый в нашей дисциплине в форме чувствительности. Чувствительность, то есть звуковое давление, создаваемое динамиком при подаче одной и той же мощности (обычно 1 Вт) на одном и том же расстоянии от диффузора (обычно 1 м), зависит уже от трёх величин, снятых нами с деталей загубленного во имя просвещения динамика. От площади диффузора, от возможностей мотора и. от массы подвижной системы. Будем считать: диаметр мы выбрали и не меняем, хотя, вообще-то, чем он больше, тем больше будет чувствительность при прочих равных. И мотор, то есть магнитная система, и звуковая катушка у нас одни и те же. Тогда чем больше мы утяжелили диффузор, тем меньше будет чувствительность динамика. Получается, хитрость удалась лишь отчасти: выиграли объём — утеряли чувствительность.

Уже в этих четырёх соснах (растущих группами по две) разработчикам басовых головок приходится не первый год блуждать, бормоча про себя: «Ужесточим подвеску — резонанс вверх уплывёт, смягчим — объём потребуется большой, утяжелим диффузор — вернём резонанс и Vas, но в чутье потеряем, тогда облегчим диффузор — резонанс уплывёт. » И так до бесконечности. Единого решения нет, оттого и разными получаются сабвуферы. Но ведь это ещё полбеды. Мы ни словом пока не обмолвились про добротность, а это из трёх параметров Тиля — Смолла самый, пожалуй, капризный. На величину добротности готового динамика влияют все запчасти, на которые мы его совсем недавно разобрали, кроме корзины и клемм. Логика влияния такова (только логика, без формул): добротность есть отношение всего, что похоже на маятник, ко всему, что похоже на тормоз. Масса диффузора — это маятник, упругость подвеса — тоже. А мотор, как мы знаем, вблизи резонанса становится тормозом и занимает положенное ему место в знаменателе пропорции. Есть ещё фактор механической добротности, за которую ответственны потери в элементах подвеса, но в основном свою роль играет фактор электрического торможения, более поддающийся прогнозу.

Значит, чем больше масса подвижной системы, тем выше добротность, чем жёстче подвес — тем тоже выше, чем мощнее магнитная система — тем, наоборот, ниже. Здесь уже навскидку ничего оценить не удастся. Приходилось видеть головки с худосочным магнитом, имеющие такую же величину добротности, что и такие же по калибру, но с огромным магнитищем. Но достаточно было пошевелить «невооружённой рукой» диффузор одного и другого, как становилось ясно, в чём секрет: диффузор первого динамика чутко реагировал даже на слабое нажатие, а у второго стоял как вкопанный, пока на него не навалишься как следует. Значит, если частоты резонанса у обоих близки, можно с уверенностью заявить: одинаковые частотные характеристики у обоих можно получить в совершенно разных объёмах. У мягкого и с маленьким магнитом — в большом, у второго, у которого всё наоборот — в маленьком. Почти наверняка у второго будет ниже чувствительность, несмотря на могучий мотор, и совсем наверняка второй будет дороже первого.

Человек с практическим отношением к природе должен в какой-то момент сообразить: мощность привода ведь зависит не только от магнита, но и от того, сколько провода находится в зазоре. Магнит стоит денег, так давайте просто намотаем побольше витков, эффект такой же, ведь индукция и длина провода в выражении для силового фактора перемножаются. Попытка хорошая. Слишком хорошая, чтобы стать удачной с первого раза. Больше витков — это ведь значит более тонкий провод, у звуковой катушки возрастёт сопротивление, ток, проходящий через катушку уменьшится, ничего мы не добились. «Ну, тогда возьмём провод толще, а катушку намотаем в два-три-четыре слоя». Да хоть в пять, для более толстой намотки придётся делать больше ширину зазора в магнитной системе, а значит, при том же магните значение индукции в зазоре упадёт. Снова приплыли. Увеличим не число витков, а диаметр катушки (чтобы больше была длина каждого витка) — тот же результат: магнитное поле окажется «размазанным» по более протяжённому зазору и потеряет силу, выраженную в величине индукции. Ну как, нравится вам теперь профессия конструктора динамических головок?

Теперь вы знаете, как родились ставшие общепринятыми характеристики сабвуферов автомобильного назначения, путём жертв, лишений, вечных компромиссов и попаданий не на одно, так на другое. А как этими, выстраданными кем-то за нас (и для нас) характеристиками пользоваться — в следующий раз.

Источник

Моя дача
Adblock
detector