- Экономическая интерпретация параметров модели
- Экономическая интерпретация коэффициента регрессии
- Контрольная работа: Экономическая интерпретация коэффициента регрессии
- Экономическая интерпретация коэффициента регрессии
- Изучение параметров уравнения линейной регрессии. Расчет остаточной суммы квадратов. Проверка выполнения предпосылок МНК. Вычисление дисперсий случайных величин. Свойства коэффициентов регрессии. Критерий поворотных точек. Парный коэффициент корреляции.
- Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Экономическая интерпретация параметров модели
Рис. 4.1. Интерпретация параметров модели
Коэффициенты корреляции и детерминации в линейной модели парной регрессии. Если все точки лежат на построенной прямой, то регрессия Y на Х «идеально» объясняет поведение зависимой переменной. Обычно поведение Y лишь частично объясняется влиянием переменной Х.
Рис. 4.2. Диаграмма Венна
Линейный коэффициент парной корреляции:
Если b>0, то ryx>0; если b 2 – остаточная дисперсия на одну степень свободы;
t – случайная величина, имеющая распределение Стьюдента с заданной вероятностью.
Вопросы и задания для самоконтроля
1. Каков экономический смысл коэффициента регрессии?
2. Какой смысл может иметь свободный коэффициент уравнения регрессии?
3. Какова связь между линейным коэффициентом корреляции и коэффициентом регрессии в линейной модели парной регрессии?
4. Каков статистический смысл коэффициента детерминации?
5. Как записывается баланс для сумм квадратов отклонений результативного признака?
6. Что происходит, когда общая СКО равна остаточной? В каком случае общая СКО равна факторной?
7. Что такое число степеней свободы? Чему равны числа степеней свободы для различных СКО в парной регрессии?
8. Как используется F-статистика в регрессионном анализе?
9. Как F-статистика связана с коэффициентом детерминации в парной регрессии?
10. Как рассчитать критерий Стьюдента для коэффициента регрессии в линейной модели парной регрессии?
11. В чем суть предсказания индивидуальных значений зависимой переменной?
Задача 1. Пусть имеется следующая модель парной регрессии, построенная по 20 наблюдениям: . При этом
— 0,5.
Задание: построить доверительный интервал для коэффициента регрессии в этой модели с вероятностями 0,9 и 0,95.
Задача 2. Анализируется зависимость между доходами горожан (X), имеющими индивидуальные домовладения, и рыночной стоимостью их домов (Y). По случайной выборке из 120 горожан данной категории получены результаты:
27343;
115870;
75200;
1620340;
250431.
Задание: найти оценку коэффициента регрессии и построить 95% доверительный интервал для коэффициента регрессии.
Экономическая интерпретация коэффициента регрессии
Министерство образования и науки РФ
Федеральное агентство по образованию ГОУ ВПО
Всероссийский заочный финансово-экономический институт
К.ф. – м.н., доцент кафедры: Василенко В.В.
Студент: Чмиль А.А., ФиК, 3 Курс
По предприятиям легкой промышленности региона получена информация, характеризующая зависимость объема выпуска продукции (Y, млн.руб.) от объема капиталовложений (X, млн.руб.).
Xi | Yi |
33 | 43 |
17 | 27 |
23 | 32 |
17 | 29 |
36 | 45 |
25 | 35 |
39 | 47 |
20 | 32 |
13 | 22 |
12 | 24 |
Вспомогательная таблица для расчетов параметров линейной регрессии. Табл.2
Найти параметры уравнения линейной регрессии, дать экономическую интерпретацию коэффициента регрессии.
После проведенных расчетов линейная модель имеет вид:
Вычислить остатки; найти остаточную сумму квадратов; оценить дисперсию остатков; построить график остатков.
Вычисленные остатки приведены в таблице 2. Остаточная сумма квадратов составила 12,02. Дисперсия остатков составила:
График остатков. Рис.1
Проверить выполнение предпосылок МНК.
Остатки гомоскедастичны, автокорреляция отсутствует (корреляция остатков и фактора Х равна нулю, рис.1), математическое ожидание остатков равно нулю, остатки нормально распределены.
Корреляция остатков и переменной Х. Рис 2.
Осуществить проверку значимости параметров уравнения регрессии с помощью t – критерия Стьюдента (α = 0,05).
Найдем стандартную ошибку коэффициента регрессии:
mb = (Dост. / ∑(x – xср.) 2 ) ½ = 0,042585061
Теперь проведем оценку значимости коэффициента регрессии:
tb = b / mb = 21,3424949
При α = 0,05 и числе степеней свободы (n – 2) tтабл. = 2,3060. Так как фактическое значение t – критерия больше табличного, то гипотезу о несущественности коэффициента можно отклонить. Доверительный интервал для коэффицента регрессии определяется как b ± t* mb. Для коэффициента регрессии b границы составят: 0,908871 – 2,3060*0,042585061 ≤ b ≤ 0,908871+2,3060*0,042585061
0,81067 ≤ b ≤ 1,0070722
Далее определим стандартную ошибку параметра a:
ma = (Dост.*( ∑x 2 / (n*∑(x – xср.) 2 )) 1/2 = 1,073194241
Мы видим, что фактическое значение параметра а больше, чем табличное, следовательно, гипотезу о несущественности параметра а можно отклонить. Доверительный интервал составит: a ± t* ma. Границы параметра составят:
9,766735 ≤ a ≤ 14,716305
Проверим значимость линейного коэффициента корреляции на основе ошибки коэффициента корреляции:
mr = ((1 – r 2 ) / (n – 2)) 1/2 = 0,046448763
Фактическое значение t – критерия Стьюдента определяется:
tr = (r / (1 – r 2 )) * (n – 2) 1/2 = 21,3424949
Значение tr фактическое больше табличного, следовательно при уровне значимости α = 0,05 и степени свободы (n – 2), коэффициент корреляции существенно отличен от нуля и зависимость является достоверной.
Вычислить коэффициент детерминации, проверить значимость уравнения регрессии с помощью f – критерия Фишера (α = 0,05), найти среднюю относительную ошибку аппроксимации. Сделать вывод о качестве модели.
R 2 = Rxy 2 = 0,98274 – детерминация.
F = (R 2 /(1 – R 2 ))*((n – m – 1)/m) = 455,5020887
Fтабл. 5,32 2 / ∑(x – xср) 2 ) 1/2 = 1,502474351*(1+(1/10)+ ((31,2 – 23,5) 2 / 828,50)) 1/2 = 1,6262596 млн.руб.
Предельная ошибка прогноза, которая в 90% случаев не будет превышена, составит:
Доверительный интервал прогноза:
γурmin = 40,598295 – 3,7501546 = 36,848141 млн.руб.
γурmax = 40,598295 + 3,7501546 = 44,348449 млн.руб.
Среднее значение показателя составит:
Yp = (36,848141 + 44,348449) / 2 = 40,598295 млн.руб.
Представить графически фактические и модельные значения Y точки прогноза
График фактических и прогнозируемых параметров. Рис.3
Составить уравнения нелинейной регрессии:
Построить графики построенных уравнений регрессии.
Y(x) = 54,1842 + (-415,755) * 1/x – гиперболическое уравнение регрессии.
Y(x) = 4,746556 * X 0,625215 – степенное уравнение регрессии.
Y(x) = 17,38287 * 1,027093 X показательное уравнение регрессии.
Графикимоделей представлены ниже на рисунках 4,5 и 6.
Для указанных моделей найти коэффициенты детерминации, коэффициент эластичности и средние относительные ошибки аппроксимации. Сравнить модели по этим характеристикам и сделать выводы.
Коэффициенты (индексы) детерминации:
R 2 показ = Rxy = 0,959136358
Эпоказ = x * lnb = 0,628221
Средние относительные ошибки аппроксимации:
А = 1/n * ∑ |y – yxi| * 100%
Как мы видим, степенная регрессия наиболее интересна в экономическом смысле, потому что у нее самый низкий показатель средней ошибки аппроксимации, самый высокий показатель эластичности и детерминации. Это говорит о том, что у степенной регрессионной модели высокое качество, она предлагает наибольшую прибыль и более зависима от фактора Х (капиталовложений).
Список использованной литературы
1. Практикум по эконометрике: Учеб. пособие / И.И. Елисеева, С.В. Курашева, Н.М. Гордеенко и др.; Под ред. И.И. Елисеевой. – М.: Финансы и статистика, 2001. – 192.: ил.
2. Эконометрика. Учебник для вузов.; Под ред. чл. – кор. РАН И.И. Елисеевой. – М.: Финансы и статистика, 2002. – 344.
Контрольная работа: Экономическая интерпретация коэффициента регрессии
Название: Экономическая интерпретация коэффициента регрессии Раздел: Рефераты по экономико-математическому моделированию Тип: контрольная работа Добавлен 15:11:21 27 декабря 2010 Похожие работы Просмотров: 1484 Комментариев: 15 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно Скачать | |||||||||||||||||||||||||||||||
Xi | Yi |
33 | 43 |
17 | 27 |
23 | 32 |
17 | 29 |
36 | 45 |
25 | 35 |
39 | 47 |
20 | 32 |
13 | 22 |
12 | 24 |
Вспомогательная таблица для расчетов параметров линейной регрессии. Табл.2
Найти параметры уравнения линейной регрессии, дать экономическую интерпретацию коэффициента регрессии.
После проведенных расчетов линейная модель имеет вид:
Вычислить остатки; найти остаточную сумму квадратов; оценить дисперсию остатков; построить график остатков.
Вычисленные остатки приведены в таблице 2. Остаточная сумма квадратов составила 12,02. Дисперсия остатков составила:
График остатков. Рис.1
Проверить выполнение предпосылок МНК.
Остатки гомоскедастичны, автокорреляция отсутствует (корреляция остатков и фактора Х равна нулю, рис.1), математическое ожидание остатков равно нулю, остатки нормально распределены.
Корреляция остатков и переменной Х. Рис 2.
Осуществить проверку значимости параметров уравнения регрессии с помощью t – критерия Стьюдента (α = 0,05).
Найдем стандартную ошибку коэффициента регрессии:
mb = (Dост. / ∑(x – xср.) 2 ) ½ = 0,042585061
Теперь проведем оценку значимости коэффициента регрессии:
tb = b / mb= 21,3424949
При α = 0,05 и числе степеней свободы (n – 2) tтабл. = 2,3060. Так как фактическое значение t – критерия больше табличного, то гипотезу о несущественности коэффициента можно отклонить. Доверительный интервал для коэффицента регрессии определяется как b ± t* mb. Для коэффициента регрессии b границы составят: 0,908871 – 2,3060*0,042585061 ≤ b ≤ 0,908871+2,3060*0,042585061
0,81067 ≤ b ≤ 1,0070722
Далее определим стандартную ошибку параметра a:
ma = (Dост.*( ∑x 2 / (n*∑(x – xср.) 2 )) 1/2 = 1,073194241
Мы видим, что фактическое значение параметра а больше, чем табличное, следовательно, гипотезу о несущественности параметра а можно отклонить. Доверительный интервал составит: a± t* ma. Границы параметра составят:
9,766735 ≤ a ≤14,716305
Проверим значимость линейного коэффициента корреляции на основе ошибки коэффициента корреляции:
mr = ((1 – r 2 ) / (n – 2)) 1/2 = 0,046448763
Фактическое значение t – критерия Стьюдента определяется:
tr = (r / (1 – r 2 )) * (n – 2) 1/2 = 21,3424949
Значение tr фактическое больше табличного, следовательно при уровне значимости α = 0,05 и степени свободы (n – 2), коэффициент корреляции существенно отличен от нуля и зависимость является достоверной.
Вычислить коэффициент детерминации, проверить значимость уравнения регрессии с помощью f – критерия Фишера (α = 0,05), найти среднюю относительную ошибку аппроксимации. Сделать вывод о качестве модели.
R 2 = Rxy 2 = 0,98274 – детерминация.
F = (R 2 /(1 – R 2 ))*((n – m – 1)/m) = 455,5020887
Fтабл. 5,32 2 / ∑(x – xср ) 2 ) 1/2 = 1,502474351*(1+(1/10)+ ((31,2 – 23,5) 2 / 828,50)) 1/2 = 1,6262596 млн.руб.
Предельная ошибка прогноза, которая в 90% случаев не будет превышена, составит:
Доверительный интервал прогноза:
γур min = 40,598295 – 3,7501546 = 36,848141 млн.руб.
γур max = 40,598295 + 3,7501546 = 44,348449 млн.руб.
Среднее значение показателя составит:
Yp = (36,848141 + 44,348449) / 2 = 40,598295 млн.руб.
Представить графически фактические и модельные значения Y точки прогноза
График фактических и прогнозируемых параметров. Рис.3
Составить уравнения нелинейной регрессии:
Построить графики построенных уравнений регрессии.
Y(x) = 54,1842 + (-415,755) * 1/x – гиперболическое уравнение регрессии.
Y(x) = 4,746556 * X 0,625215 – степенное уравнение регрессии.
Y(x) = 17,38287 * 1,027093 X показательное уравнение регрессии.
Графикимоделей представлены ниже на рисунках 4,5 и 6.
Для указанных моделей найти коэффициенты детерминации, коэффициент эластичности и средние относительные ошибки аппроксимации. Сравнить модели по этим характеристикам и сделать выводы.
Коэффициенты (индексы) детерминации:
R 2 показ = Rxy = 0,959136358
Эпоказ = x * lnb = 0,628221
Средние относительные ошибки аппроксимации:
А = 1/n * ∑ |y – yxi | * 100%
Как мы видим, степенная регрессия наиболее интересна в экономическом смысле, потому что у нее самый низкий показатель средней ошибки аппроксимации, самый высокий показатель эластичности и детерминации. Это говорит о том, что у степенной регрессионной модели высокое качество, она предлагает наибольшую прибыль и более зависима от фактора Х (капиталовложений).
Список использованной литературы
1. Практикум по эконометрике: Учеб. пособие / И.И. Елисеева, С.В. Курашева, Н.М. Гордеенко и др.; Под ред. И.И. Елисеевой. – М.: Финансы и статистика, 2001. – 192.: ил.
2. Эконометрика. Учебник для вузов.; Под ред. чл. – кор. РАН И.И. Елисеевой. – М.: Финансы и статистика, 2002. – 344.
Экономическая интерпретация коэффициента регрессии
Изучение параметров уравнения линейной регрессии. Расчет остаточной суммы квадратов. Проверка выполнения предпосылок МНК. Вычисление дисперсий случайных величин. Свойства коэффициентов регрессии. Критерий поворотных точек. Парный коэффициент корреляции.
Рубрика | Экономико-математическое моделирование |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 04.02.2014 |
Размер файла | 1,8 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
линейный регрессия дисперсия корреляция
По предприятиям легкой промышленности региона получена информация, характеризующая зависимость объема выпуска продукции (Y, млн. руб.) от объема капиталовложений (X, млн. руб.).
Найти параметры уравнения линейной регрессии, дать экономическую интерпретацию коэффициента регрессии.
Вычислить остатки; найти остаточную сумму квадратов; оценить дисперсию остатков S 2 е ; построить график остатков.
Проверить выполнение предпосылок МНК.
Осуществить проверку значимости параметров уравнения регрессии с помощью t-критерия Стьюдента (б=0,05).
Вычислить коэффициент детерминации, проверить значимость уравнения регрессии с помощью f-критерия Фишера (б=0,05), найти среднюю относительную ошибку аппроксимации. Сделать вывод о качестве модели.
Осуществить прогнозирование среднего значения показателя Y при уровне значимости б=0,1, если прогнозное значение фактора X составит 80% от его максимального значения.
Представить графически фактическое и модельное значение Y точки прогноза.
Составить уравнения нелинейной регрессии:
Привести графики построенных уравнений регрессии.
Для указанных моделей найти коэффициенты детерминации, коэффициенты эластичности и средние относительные ошибки аппроксимации. Сравнить модели по этим характеристикам и сделать вывод.
Задача 1. Уравнение линейной регрессии имеет вид:
А значения параметров а и b линейной модели можно определить по данным формулам:
Для определения параметров а и b заполним вспомогательную таблицу
b = (479,2-23,7×16,1)/( 360,1-16,1x 16,1)?0,97
Более точные значения параметров а и b указаны в таблице.
С помощью ППП Excel найдем параметры уравнения линейной регрессии. Порядок выселения следующий:
Активизируем инструмент Пакет анализа: Сервис >Настройки;
В диалоговом окне Настройки отметим пункт Пакет анализа> ОК.
Ведем исходные данные;
Сервис > Анализ данных > Регрессия>ОК (Рис. 1.);
Рисунок. 1. Диалоговое окно ввода параметров инструмента Регрессия
Размещено на http://www.allbest.ru/
Заполним диалоговое окно ввода данных и параметров вывода:
Результаты регрессионного анализа для данных представлены на рис. 3.
Рис. 3. Результат применения инструмента Регрессия
В ячейках В17 и В18 расположены значения параметров а и b соответственно.
Вывод: уравнение регрессии имеет вид:
Коэффициент регрессии b показывает, что с ростом капиталовложений на 1 млн. руб. выпуск продукции увеличивается в среднем на 0,97 млн. руб.
Остатки определяются по формуле:
Соответственно остаточная сумма квадратов определяется по формуле:
На рис. 3 в ячейках С25:С34 уже вычислены остатки.
А также в таблице 2 столбец «ei=yi-yi». Остаточную сумму квадратов найдем с помощью ППП Excel, использую функцию СТЕПЕНЬ (Задав степень 2). Результаты вычислений приведены в таблице столбец «ei 2 ».
Дисперсия остатков определяется по формуле:
Дисперсия случайных величин определяются по формулам:
Данные для вычисления дисперсий случайных величин получены в таблице.
Результат вычисления приведен в таблице 2 в строке Дисперсия В37.
График остатков уже построен с помощью инструмента Анализа данных Регрессия (рис. 3). Приведем график остатков в отдельный вид (Рис. 4)
Рис. 4. График остатков
Проверим выполнение предпосылок МНК. Свойства коэффициентов регрессии существенным образом зависят от свойств случайной составляющей. Для того чтобы МНК давал наилучшие результаты, должны выполняться условия Гаусса-Маркова.
Условие 1. Математическое ожидание случайной составляющей в любом наблюдении должно быть равно нулю: М(еi)=0.
В нашем случае уравнение регрессии включает постоянный член и, следовательно, это условие выполняется автоматически.
Вывод: случайная составляющая (еi) или зависимая переменная (yi) есть величины случайные.
Условие 3. Случайная переменная в любых двух наблюдениях независима.
Таблица критических значений dw-критерия Дарбина-Уотсона
Adblockdetector