Электрическая машина предназначенная для преобразования параметров электрической энергии называется

Содержание
  1. Преобразователь электрической энергии
  2. Содержание
  3. История развития
  4. Функции преобразователей
  5. Классификация
  6. По характеру преобразования
  7. Выпрямители
  8. Инверторы
  9. Преобразователи частоты
  10. Импульсные преобразователи напряжения
  11. По способу управления
  12. По типу схем
  13. По способу управления
  14. Примечания
  15. Полезное
  16. Смотреть что такое «Преобразователь электрической энергии» в других словарях:
  17. Преобразователи энергии в виде электрических машин
  18. Вращающиеся преобразователи мощности
  19. Статические преобразователи мощности
  20. Роль электромеханического преобразования энергии
  21. Основные законы определяющие электромеханическое преобразование энергии
  22. Процесс электромеханического преобразования энергии
  23. Вращающиеся электрические машины
  24. Реверсивные машины
  25. Потери при преобразовании энергии
  26. Электрические машины
  27. Области применения электрических машин
  28. Основополагающие законы электромеханического преобразования энергии в индуктивных машинах
  29. Закон Ампера
  30. Закон электромагнитной индукции Фарадея
  31. Вращающиеся электрические машины
  32. Виды вращающихся электрических машин
  33. По характеру магнитного поля в основном воздушном зазоре
  34. Что такое генератор (электростанция)
  35. Электромеханический преобразователь
  36. Содержание
  37. Основные электромеханические преобразователи
  38. Электрические машины
  39. Трансформатор
  40. Синхронная машина
  41. Асинхронная машина
  42. Машина постоянного тока
  43. Умформер
  44. Примечания
  45. Полезное
  46. Смотреть что такое «Электромеханический преобразователь» в других словарях:

Преобразователь электрической энергии

Содержание

История развития

При начале практического использования электрической энергии (1880-е) возникла проблема преобразования энергии.

Период использования Компонентная база Особенности
1880-е Мотор-генератор + Чистая синусоида
+ Высокий КПД

+ Большие мощности
— Материалоёмкость
— Сложность ремонта и обслуживания
— Шум и вибрации

1880-е
Используются в настоящее время
Трансформаторы + Большая надёжность
+ Высокий КПД
+ Большие мощности
— Большие габариты при малых частотах
— Невозможность преобразования постоянного тока
1930—1970-е
В настоящее время практически не используются
Ионные приборы — Хрупкость корпусов (стекло)
— Длительное время подготовки к работе
1960-е
Используются в настоящее время
Полупроводниковые диоды, тиристоры

+ Компактность
+ Бесшумность
+ Лёгкость и гибкость управления
— Потери мощности в ключах
— Искажения и помехи в сетях

Функции преобразователей

Классификация

По характеру преобразования

Выпрямители

Выпрямитель — устройство, предназначенное для преобразования энергии источника переменного тока в постоянный ток. [1]

Инверторы

Инвертор — устройство, задача которого обратна выпрямителю, то есть преобразование энергии источника постоянного тока в энергию переменного тока.

Инверторы подразделяются на два класса: ведомые сетью (зависимые) и автономные.

Зависимые инверторы

Ведомые инверторы преобразуют энергию источника постоянного тока в переменный с отдачей её в сеть переменного тока, то есть осуществляют преобразование, обратное выпрямителю. [2]

Автономные инверторы

Автономные инверторы — устройства, преобразующие постоянный ток в переменный с неизменной или регулируемой частотой и работающие на автономную (не связанную с сетью переменного тока) нагрузку. [3]

В свою очередь автономные инверторы подразделяются на:

Преобразователи частоты

40px Planned section.svg

Импульсные преобразователи напряжения

40px Planned section.svg

По способу управления

По типу схем

По способу управления

Примечания

Полезное

Смотреть что такое «Преобразователь электрической энергии» в других словарях:

преобразователь электрической энергии — Электротехническое изделие (устройство), преобразующее электрическую энергию с одними значениями параметров и (или) показателей качества в электрическую энергию с другими значениями параметров и (или) показателей качества. Примечание.… … Справочник технического переводчика

Преобразователь электрической энергии — 4. Преобразователь электрической энергии Converter Преобразователь электроэнергии Электротехническое изделие (устройство), преобразующее электрическую энергию с одними значениями параметров и (или) показателей качества в электрическую энергию с… … Словарь-справочник терминов нормативно-технической документации

преобразователь электрической энергии, — 2 преобразователь электрической энергии, преобразователь электроэнергии: Электротехническое устройство, преобразующее электрическую энергию с одними значениями параметров и/или показателей качества в электрическую энергию с другими значениями… … Словарь-справочник терминов нормативно-технической документации

Преобразователь электрической энергии — – электротехническое изделие (устройство), преобразующее электрическую энергию с одними значениями параметров и (или) показателей качества в электрическую энергию с другими значениями параметров и (или) показателей качества. ГОСТ 18311 80 … Коммерческая электроэнергетика. Словарь-справочник

Преобразователь электрической энергии — 1. Электротехническое изделие (устройство), преобразующее электрическую энергию с одними значениями параметров и (или) показателей качества в электрическую энергию с другими значениями параметров и (или) показателей качества Употребляется в… … Телекоммуникационный словарь

Преобразователь электрической энергии (Преобразователь электроэнергии) — English: Electricity converter Электротехническое изделие (устройство), преобразующее электрическую энергию с одними значениями параметров и (или) показателей качества в электрическую энергию с другими значениями параметров и (или) показателей… … Строительный словарь

ГОСТ Р 54130-2010: Качество электрической энергии. Термины и определения — Терминология ГОСТ Р 54130 2010: Качество электрической энергии. Термины и определения оригинал документа: Amplitude die schnelle VergroRerung der Spannung 87 Определения термина из разных документов: Amplitude die schnelle VergroRerung der… … Словарь-справочник терминов нормативно-технической документации

ПЛАЗМЕННЫЕ ИСТОЧНИКИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ — преобразователи тепловой энергии плазмы в электрич. энергию. Существуют два типа П. и. э. э. магнитогидродинамический генератор и термоэлектронный преобразователь. Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор … Физическая энциклопедия

Плазменные источники электрической энергии — преобразователи тепловой энергии плазмы (См. Плазма) в электрическую энергию. Существует 2 типа П. и. э. э. Магнитогидродинамический генератор и Термоэлектронный преобразователь … Большая советская энциклопедия

преобразователь частоты — [IEV number 151 13 43] [IEV number 313 03 06] преобразователь частоты Преобразователь электрической энергии переменного тока, который преобразует электрическую энергию с изменением частоты [ОСТ 45.55 99] EN frequency converter electric energy… … Справочник технического переводчика

Источник

Преобразователи энергии в виде электрических машин

Электрические машины – это преобразователи энергии, устройства, которые преобразуют энергию из одной формы в другую. Они преобразуют механическую работу в электрическую энергию или наоборот.

Существуют также силовые преобразователи, которые преобразуют электрическую энергию одной формы в другую. Они называются статическими преобразователями мощности.

Ниже перечислены некоторые примеры преобразователей мощности:

Преобразователи мощности бывают вращающиеся и статистические.

Вращающиеся преобразователи мощности

Электрические машины, преобразующие электрическую энергию в механическую работу, называются электрическими двигателями.

Электрические машины, преобразующие механическую работу в электрическую энергию, называются электрическими генераторами.

lazy placeholderМеханическая энергия обычно проявляется в форме вращательного движения. Электрические двигатели и генераторы называются преобразователями вращательной мощности или вращающимися электрическими машинами. Процесс преобразования электрической энергии в механическую работу называется электромеханическим.

Статические преобразователи мощности

В отличие от электрических машин, силовые трансформаторы не содержат движущихся частей. Их работа основана на электромагнитной связи между первичной и вторичной обмотками, окружающими один и тот же магнитопровод.

В дополнение к электрическим машинам и силовым трансформаторам существуют силовые преобразователи, работа которых не основана на электромагнитной связи токовых цепей и магнитопровода.

Преобразователи, содержащие полупроводниковые силовые переключатели, известны как статические силовые преобразователи или устройства силовой электроники. Одним из таких примеров является диодный выпрямитель, содержащий четыре силовых диода, соединенных в мост. Питаемый переменным напряжением, диодный выпрямитель выдает пульсирующее постоянное напряжение. Диодный выпрямитель осуществляет преобразование электрической энергии переменного тока в электрическую энергию постоянного тока.

Преобразование электрической энергии постоянного тока в электрическую энергию переменного тока осуществляется инверторами, статическими преобразователями мощности, содержащими полупроводниковые силовые ключи, такие как силовые транзисторы или силовые тиристоры. Статические преобразователи мощности часто используются в сочетании с электрическими машинами.

Роль электромеханического преобразования энергии

Электромеханическое преобразование играет ключевую роль в производстве и использовании электрической энергии.

Электрические генераторы производят электрическую энергию, в то время как двигатели являются потребителями, преобразующими значительную часть электрической энергии в механические работы, необходимые для производственных процессов, транспортировки, освещения и других промышленных и бытовых применений.

Благодаря электромеханическому преобразованию энергия транспортируется и доставляется удаленным потребителям с помощью электрических проводников. Электрическая передача достаточна надежна, она не сопровождается выбросами газов или других вредных веществ и осуществляется с низкими потерями энергии. Существуют линии передачи постоянного тока.

На электростанциях паровые и водяные турбины производят механическую работу, которая подается на электрические генераторы. Через происходящие процессы в генераторе механическая работа преобразуется в электрическую энергию, которая доступна на клеммах генератора в виде переменного тока и напряжения.

Назначение электрических сетей в передаче электрической энергии в промышленные центры и населенные пункты, где силовые кабели и линии распределительной сети обеспечивают электроснабжение различных потребителей, расположенных в производственных цехах, транспортных единицах, офисах и домашних хозяйствах. В процессе передачи и распределения напряжение несколько раз преобразуется с помощью силовых трансформаторов. Электрические генераторы, электродвигатели и силовые трансформаторы являются жизненно важными компонентами электроэнергетической системы

Основные законы определяющие электромеханическое преобразование энергии

Электромеханическое преобразование энергии может быть достигнуто путем применения различных принципов физики. Работа электрических машин обычно основана на магнитном поле, которое соединяет токоведущие цепи и движущиеся части машины. Проводники и ферромагнитные детали в магнитном поле связи подвергаются воздействию электромагнитных сил. Проводники образуют контуры и цепи, несущие электрические токи. Связь потока в контуре может изменяться из-за изменения электрического тока или из-за движения. Изменение потока вызывает электродвижущую силу в контурах.

Основные законы физики, определяющие электромеханическое преобразование энергии в электрических машинах с магнитным полем связи следующие:

Процесс электромеханического преобразования энергии

Процесс электромеханического преобразования энергии в электрических машинах основан на взаимодействии магнитного поля связи с проводниками, несущими электрические токи. Магнитный поток направляется через магнитопроводы, изготовленные из ферромагнитных материалов. Электрические токи направляются через токопроводящие провода. Магнитопроводы формируются путем укладки железных листов, разделенных тонкими слоями изоляции, в то время как цепи тока выполнены из изолированных медных проводников.

Три наиболее важных типа электрических машин:

Типы электрических машин имеют различную конструкцию и используют различные способы создания магнитных полей и токов.

Вращающиеся электрические машины имеют неподвижную часть, статор, и движущуюся часть, ротор, который может вращаться вокруг оси машины. Магнитная и токовая цепи могут быть установлены как на статор и ротор. В дополнение к магнитным и токовым цепям электрические машины также имеют другие детали, такие как корпус, вал, подшипники и клеммы токовых цепей.

Вращающиеся электрические машины

Механическая работа электрических машин может быть связана с вращением или перемещением.

Большинство электрических машин состоит из вращающихся электромеханических преобразователей, производящих вращательное движение и имеющих цилиндрические роторы.

Линейные двигатели обеспечивающие линейное перемещение подвижной части встречаются довольно редко.

Токовые цепи машины называются обмотками. Они могут быть подключены к внешним источникам электроэнергии или к потребителям электрической энергии. Концы обмотки доступны в качестве электрических клемм. Электрические клеммы обеспечивают электрический доступ к машине. Поскольку электрические машины выполняют электромеханическое преобразование, они имеют как электрический, так и механический доступ. Через электрические клеммы машина может получать электрическую энергию от внешних источников или поставлять электрическую энергию потребителям в схемы, которые являются внешними по отношению к машине. Ротор расположен внутри полого цилиндрического статора. Вдоль оси ротора расположен стальной вал, доступный с торцов станка. Угловая частота вращения ротора называется частотой вращения ротора.

Электрическая машина может выполнять или принимать механическую работу. Вал составляет механическую клемму машины. Он передает вращающий момент или просто крутящий момент внешним источникам или потребителям механической работы. Крутящий момент создается взаимодействием магнитного поля и электрического тока. Поэтому его еще называют электромагнитным моментом. В тех случаях, когда крутящий момент способствует движению и действует в направлении для увеличения скорости, это называется крутящим моментом привода.

Электрический двигатель преобразует электрическую энергию в механическую работу. Последняя подается через вал на машину, работающую в качестве механической нагрузки, также называемую рабочей машиной.

Электрический генератор преобразует механическую работу в электрическую энергию. Он получает механическую работу от водяной или паровой турбины; таким образом, мощность генератора имеет отрицательное значение. Вращающий момент турбины стремится привести ротор в движение, в то время как крутящий момент, создаваемый электрической машиной, противодействует этому движению.

Поскольку электрический генератор преобразует механическую работу в электрическую энергию и подает ее в сеть питания, мощность генератора имеет отрицательное значение. Знак этих переменных связан с опорными направлениями. Изменение опорных направлений для крутящих моментов и токов приведет к положительным крутящим моментам генератора и положительной мощности генератора.

Реверсивные машины

Электрические машины в основном реверсивны.

Реверсивная электрическая машина может работать либо как генератор, преобразующий механическую работу в электрическую энергию, либо как двигатель, преобразующий электрическую энергию в механическую работу. Переход от генератора в режим работы двигателя сопровождается изменением электрических и механических переменных, таких как напряжение, ток, крутящий момент и скорость. Режим работы может быть изменен без изменений в конструкции машины, без изменения в цепях тока и без изменений в соединении вала между электрической и рабочей машиной. Примером реверсивной электрической машины является асинхронный двигатель. При угловых скоростях вращения ротора ниже синхронной скорости асинхронная машина работает в режиме двигателя. Если скорость увеличивается выше синхронной скорости, электромагнитный крутящий момент противодействует движению, в то время как асинхронная машина преобразует механическую работу в электрическую энергию, таким образом, работая в режиме генератора.

Потери при преобразовании энергии

Преобразование энергии сопровождается потерями энергии в цепях тока, магнитных цепях, а также потерями механической энергии в результате различных форм вращательного трения. Из-за потерь значения мощности на электрическом и механическом терминалы не равны.

В режиме двигателя полученная механическая мощность несколько ниже, чем вложенная электрическая мощность из-за потерь на преобразование.

В режиме генератора полученная электрическая мощность несколько ниже, чем вложенная механическая мощность из-за потерь.

Источник

Электрические машины

В качестве энергоносителя в электрической машине может быть использовано как магнитное, так и электрическое поле. Машины, в которых для преобразования энергии используется магнитное поле, называются индуктивными, а те, в которых используется электрическое поле, — емкостными. Возможно также совместное использование магнитного и электрического полей. Такие машины называются индуктивно-емкостными.

На практике наибольшее распространение получили индуктивные машины.

Принято различать электромеханические преобразователи в зависимости от цели преобразования энергии на:

Области применения электрических машин

drive power
Рисунок 1 – Области распространения электрических машин

Для управления современными электрическими машинами используются сложные электронные системы, которые конструктивно объединяются с электромеханическим преобразователем и образуют так называемую электромеханотронную систему, выступающую как единый технический комплекс. Все это существенно расширяет функциональные возможности электрических машин и обеспечивает их широкое внедрение во все сферы производственной и бытовой деятельности человечества [1].

Основополагающие законы электромеханического преобразования энергии в индуктивных машинах

Закон Ампера

principle amperes law1

Согласно закону, установленному Ампером, на проводник с током в магнитном поле действует сила

Направление этой силы определяется по правилу «левой руки».

Закон электромагнитной индукции Фарадея

Всякое изменение магнитного поля во времени возбуждает в окружающем пространстве электрическое поле. Циркуляция вектора напряженности E этого поля по любому неподвижному замкнутому контуру s определяется выражением [3] [4]

m18,

Электродвижущая сила индукции возникающая в замкнутом контуре, равна скорости изменения во времени потока магнитной индукции

m19,

Знак «-» показывает, что индукционный ток, возникающий в замкнутом проводящем контуре имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.

Вращающиеся электрические машины

Виды вращающихся электрических машин

По характеру магнитного поля в основном воздушном зазоре

Источник

Что такое генератор (электростанция)

Использование энергетических ресурсов нуждается в преобразовании одних форм энергии в другие. Устройства, в которых такое преобразование происходит, являются преобразователями энергии. Данное преобразование, как правило, включает в себя промежуточную стадию: энергия простого носителя предварительно преобразуется в механическую, а после этого полученная механическая энергия преобразуется в электрическую энергию.

Энергетический преобразователь, преобразующий механическую энергию в электрическую энергию или наоборот, называется электрической машиной. Электрическая машина, предназначенная для преобразования механической энергии в электрическую энергию, называются электрическим генератором. Любая электрическая машина является электромагнитным устройством, которое включает в себя взаимозависимые магнитные и электрические цепи.

Если встал вопрос, как выбрать электростанцию или генератор, то нужно учитывать множество факторов:

Ниже приведена классификация генераторов по различным параметрам.

По типу первичного двигателя промежуточной стадии электрические генераторы бывают:

По виду выходного электрического тока бывают электрические генераторы:

По мобильности:

В свою очередь стационарные генераторы бывают закрытого и открытого типа (закрытый тип имеет шумопоглощающий всепогодный кожух, открытый тип может быть установлен в помещении, где нет ограничений по уровню шума).

По назначению:

По применению:

По числу фаз:

По виду пуска или степени автоматизации:

По виду топлива в двигателе внутреннего сгорания:

По производителю

Дизельные: Honda, Kubota, Yamaha (Япония), John Deer (США), Hatz (Германия), Perkins (Великобритая) и др. Продукцию Hondа отличает бесшумность работы и долговечность двигателя. Бензиновые: Mecc Alte, Sincro, Soga (Италия), Stamford (Великобритания) и др. Синхронные генераторы Mecc Alte отличаются высочайшим качеством, безопасностью и надежностью.

Наличие собственного, независимого источника электроэнергии – важное дополнение к техническому оборудованию частного домовладения или предприятия. Электрогенератор решает многие проблемы, связанные с электроснабжением. Правильная эксплуатация и должное сервисное обслуживание позволит использовать электростанции многие годы.

Источник

Электромеханический преобразователь

Электромеханические преобразователи — это класс устройств, созданных для преобразования электрической энергии в механическую и наоборот. Также возможно преобразование электрической энергии в электрическую же энергию другого рода. Основными видом электромеханического преобразователя является электродвигатель (электрогенератор).

Содержание

Основные электромеханические преобразователи

Электрические машины

Электрические машины, за редким исключением, совершают однонаправленное непрерывное преобразование энергии. Особым видом электрической машины является трансформатор, не имеющий движущихся частей, участвующих непосредственно в преобразовании энергии, но принципиально схожий с генераторами и двигателями. Все электрические машины являются обратимыми (могут быть как генераторами, так и двигателями). [1]

По назначению разделяют:

По действию разделяют:

Трансформатор

Трансформатором называется статическая электрическая машина, способная преобразовывать электрическую энергию из одного вида в другой, изменяя её основные параметры — напряжение (трансформатор напряжения), мощность (трансформатор мощности), силу тока (трансформатор тока) или частоту (трансформатор частоты).

Основным параметром любого трансформатора является коэффициент трансформации — величина, равная отношению значений изменяемого параметра (напряжения, тока, мощности или частоты).

Синхронная машина

Синхронная машина — это такая электрическая машина переменного тока, в которой частота вращения ротора равна частоте изменения (вращения) электромагнитного поля статора.

Асинхронная машина

Асинхронной машиной, в противовес синхронной, называют такую электрическую машину, в которой частота вращения ротора меньше частоты изменения (вращения) электромагнитного поля статора. Эта разница называется скольжением.

Машина постоянного тока

Машина постоянного тока — электрическая машина, преобразующая энергию в два этапа: электрическую энергию постоянного тока в электрическую энергию переменного тока при помощи преобразователя частоты (механического выпрямителя — коллектора); электрическую энергию переменного тока в механическую энергию на валу двигателя.

Умформер

Умформер (моторгенератор) — устройство, объединяющее, как правило, оба вида машин переменного тока (синхронную и асинхронную), либо переменного и постоянного тока. Преобразует один вид электрической энергии в электрическую энергию другого рода. Является электромеханическим преобразователем электрического тока.

Примечания

40px Wiki letter w.svg

Полезное

Смотреть что такое «Электромеханический преобразователь» в других словарях:

ЭЛЕКТРОМЕХАНИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ — преобразует электрический ток в соответствующее ему механическое линейное или угловое перемещение (напр., катушка индуктивности со свободно перемещающимся сердечником). Применяются главным образом в качестве исполнительных механизмов в системах… … Большой Энциклопедический словарь

электромеханический преобразователь — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN electromechanical transducer … Справочник технического переводчика

электромеханический преобразователь — преобразует электрический ток в соответствующее ему механическое линейное или угловое перемещение (например, катушка индуктивности со свободно перемещающимся сердечником). Применяются главным образом в качестве исполнительных механизмов в… … Энциклопедический словарь

электромеханический преобразователь — elektromechaninis keitiklis statusas T sritis automatika atitikmenys: angl. electromechanical converter vok. elektromechanischer Umformer, m; elektromechanischer Wandler, m rus. электромеханический преобразователь, m pranc. convertisseur… … Automatikos terminų žodynas

электромеханический преобразователь — elektromechaninis keitlys statusas T sritis Standartizacija ir metrologija apibrėžtis Įtaisas elektriniam dydžiui keisti mechaniniu. atitikmenys: angl. electromechanical transducer vok. elektromechanischer Wandler, m rus. электромеханический… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

Электромеханический преобразователь — устройство для преобразования механических перемещений (колебаний) в изменение электрического тока или напряжения (электрический сигнал) и наоборот. Применяются главным образом как исполнительные устройства систем автоматического… … Большая советская энциклопедия

ЭЛЕКТРОМЕХАНИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ — устройство, преобразующее электрич. величины (силу тока, напряжение) в соответствующее механич. перемещение. Примерами Э. п., в частности, являются механизмы электроизмерит. приборов со стрелочным отсчётом, электромагн. реле … Большой энциклопедический политехнический словарь

преобразователь электромеханический (как активный элемент) — 1. Электромеханический элемент, служащий непосредственно для преобразования электрической энергии в механическую (акустическую) и обратно (например, пьезоэлемент). 2. Активный элемент преобразователя, преобразующий электрическую энергию в… … Справочник технического переводчика

электромеханический цифровой прибор (преобразователь) — Цифровой прибор (преобразователь), переключающие устройства измерительной цепи которого построены на контактных элементах. [ГОСТ 13607 68] Тематики приборы и преобразователи электроизмерительные … Справочник технического переводчика

Электромеханический фильтр — ЭМФ советского производства, предназначенный для выделения нижней боковой полосы в аппаратуре радиосвязи с промежуточной частотой 500 кГц. Ширина полосы пропускания 3,1 кГц. Механическ … Википедия

Источник

Моя дача
Adblock
detector