- Эллипс параметры и свойства
- Эллипс и его свойства
- Содержание
- Связанные определения
- Соотношения между элементами фигуры
- Координатное представление
- Длина дуги эллипса
- Приближённые формулы для периметра
- Точные формулы для периметра
- Площадь эллипса
- Определение и элементы эллипса
- Основные свойства эллипса
- Уравнение эллипса
- Площадь эллипса
- Площадь сегмента эллипса
- Длина дуги эллипса
- Радиус круга, вписанного в эллипс
- Радиус круга, описанного вокруг эллипса
- Как построить эллипс
- Эллипс — свойства, уравнение и построение фигуры
- Определение и элементы эллипса
- Основные свойства эллипса
- Уравнение эллипса
- Площадь эллипса
- Площадь сегмента эллипса
- Длина дуги эллипса
- Радиус круга, вписанного в эллипс
- Радиус круга, описанного вокруг эллипса
- Как построить эллипс
- Основные свойства эллипса
- Геометрические свойства эллипса
- Свойство 1
- Свойство 2
- Свойство 3
- Свойство 4
Эллипс параметры и свойства
Рассмотрим свойства эллипса.
Эллипс пересекает каждую из осей координат в двух точках.
Пусть – произвольная точка эллипса. Найдем расстояния от точки до фокусов эллипса.
|
Рассмотрим выражение
Здесь мы учли, что координаты точки удовлетворяют уравнению эллипса.
Сумма расстояний от любой точки эллипса до его фокусов есть величина постоянная и равная удвоенной большей полуоси.
Действительно, используя полученные выражения для расстояний от точки эллипса до его фокусов, получим
|
Эллипс имеет две взаимно перпендикулярные оси симметрии.
В качестве характеристики формы эллипса удобнее пользоваться эксцентриситетом. Так как
|
то чем больше ε, тем более сжат эллипс.
При малых значениях эксцентриситета эллипс мало отличается от окружности. При эллипс превращается в окружность.
Координаты точки при переходе в новую систему будут равны:
|
То есть точка в новой системе координат имеет те же координаты, что и фокус эллипса и поэтому совпадет с ним.
С учетом свойств симметрии эллипса, свойство, с помощью которого мы определили эллипс, в новых терминах можно сформулировать следующим образом: отношение расстояния от любой точки эллипса до одного из его фокусов к расстоянию от этой точки до соответствующей ему директрисы есть величина постоянная и равная эксцентриситету. Вид эллипса в канонической системе координат и его директрисы приведены на рис. 10.8.1.
Эллипс и его свойства
причём
Также эллипс можно определить как:
Содержание
Связанные определения
Соотношения между элементами фигуры
.
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
Координатное представление
Длина дуги эллипса
Длина дуги плоской линии определяется по формуле:
Воспользовавшись параметрическим представлением эллипса получаем следующее выражение:
После замены выражение для длины дуги принимает окончательный вид:
,
Приближённые формулы для периметра
Максимальная погрешность этой формулы
0,63 % при эксцентриситете эллипса
0,988 (соотношение осей
1/6,5). Погрешность всегда положительная.
Приблизительно в два раза меньшие погрешности в широком диапазоне эксцентриситетов дает формула:
, где
Максимальная погрешность этой формулы
0,36 % при эксцентриситете эллипса
0,980 (соотношение осей
1/5). Погрешность также всегда положительная.
Существенно лучшую точность при Рамануджана :
При эксцентриситете эллипса
0,980 (соотношение осей
1/5) погрешность составляет
0,02 %. Погрешность всегда отрицательная.
Еще точней оказалась вторая формула Рамануджана:
Точные формулы для периметра
Джеймс Айвори и Фридрих Бессель независимо друг от друга получили формулу для периметра эллипса:
где — Арифметико-геометрическое среднее 1 и
, а
— модифицированное арифметико-геометрическое среднее 1 и
, которое было введено С. Ф. Адлаем в статье 2012 года.
Площадь эллипса
Площадь эллипса вычисляется по формуле
Шаблон:Нет АИ
Если эллипс задан уравнением , то площадь можно определить по формуле
.
Среди центральных кривых второго порядка особое место занимает эллипс, близкий к окружности, обладающий похожими свойствами, но всё же уникальный и неповторимый.
Определение и элементы эллипса
Множество точек координатной плоскости, для каждой из которых выполняется условие: сумма расстояний до двух заданных точек (фокусов) есть величина постоянная, называется эллипсом.
По форме график эллипса представляет замкнутую овальную кривую:
Наиболее простым случаем является расположение линии так, чтобы каждая точка имела симметричную пару относительно начала координат, а координатные оси являлись осями симметрии.
Отрезки осей симметрии, соединяющие две точки эллипса, называются осями. Различаются по размерам (большая и малая), а их половинки, соответственно, считаются полуосями.
Точки эллипса, являющиеся концами осей, называются вершинами.
Расстояния от точки на линии до фокусов получили название фокальных радиусов.
Расстояние между фокусами есть фокальное расстояние.
Отношение фокального расстояния к большей оси называется эксцентриситетом. Это особая характеристика, показывающая вытянутость или сплющенность фигуры.
Основные свойства эллипса
имеются две оси и один центр симметрии;
при равенстве полуосей линия превращается в окружность;
все точки фигуры лежат внутри прямоугольника со сторонами, равными большой и малой осям эллипса, проходящими через вершины параллельно осям.
Уравнение эллипса
Пусть линия расположена так, чтобы центр симметрии совпадал с началом координат, а оси – с осями координат.
Для составления уравнения достаточно воспользоваться определением, введя обозначение:
а – большая полуось (в наиболее простом виде её располагают вдоль оси Оx) (большая ось, соответственно, равна 2a);
c – половина фокального расстояния;
M(x;y) – произвольная точка линии.
В этом случае фокусы находятся в точках F1(-c;0); F2(c;0)
После ввода ещё одного обозначения
получается наиболее простой вид уравнения:
Параметр b численно равен полуоси, расположенной вдоль Oy (a > b).
В случае (b b) формула эксцентриситета (ε) принимает вид:
Чем меньше эксцентриситет, тем более сжатым будет эллипс.
Площадь эллипса
Площадь фигуры (овала), ограниченной эллипсом, можно вычислить по формуле:
a – большая полуось, b – малая.
Площадь сегмента эллипса
Часть эллипса, отсекаемая прямой, называется его сегментом.
Длина дуги эллипса
Длина дуги находится с помощью определённого интеграла по соответствующей формуле при введении параметра:
Радиус круга, вписанного в эллипс
В отличие от многоугольников, круг, вписанный в эллипс, касается его только в двух точках. Поэтому наименьшее расстояние между точками эллипса (содержащее центр) совпадает с диаметром круга:
Радиус круга, описанного вокруг эллипса
Окружность, описанная около эллипса, касается его также только в двух точках. Поэтому наибольшее расстояние между точками эллипса совпадает с диаметром круга:
Онлайн калькулятор позволяет по известным параметрам вычислить остальные, найти площадь эллипса или его части, длину дуги всей фигуры или заключённой между двумя заданными точками.
Как построить эллипс
Построение линии удобно выполнять в декартовых координатах в каноническом виде.
Строится прямоугольник. Для этого проводятся прямые:
Сглаживая углы, проводится линия по сторонам прямоугольника.
Полученная фигура есть эллипс. По координатам отмечается каждый фокус.
При вращении вокруг любой из осей координат образуется поверхность, которая называется эллипсоид.
Эллипс — свойства, уравнение и построение фигуры
Среди центральных кривых второго порядка особое место занимает эллипс, близкий к окружности, обладающий похожими свойствами, но всё же уникальный и неповторимый.
Определение и элементы эллипса
Множество точек координатной плоскости, для каждой из которых выполняется условие: сумма расстояний до двух заданных точек (фокусов) есть величина постоянная, называется эллипсом.
По форме график эллипса представляет замкнутую овальную кривую:
Наиболее простым случаем является расположение линии так, чтобы каждая точка имела симметричную пару относительно начала координат, а координатные оси являлись осями симметрии.
Отрезки осей симметрии, соединяющие две точки эллипса, называются осями. Различаются по размерам (большая и малая), а их половинки, соответственно, считаются полуосями.
Точки эллипса, являющиеся концами осей, называются вершинами.
Расстояния от точки на линии до фокусов получили название фокальных радиусов.
Расстояние между фокусами есть фокальное расстояние.
Отношение фокального расстояния к большей оси называется эксцентриситетом. Это особая характеристика, показывающая вытянутость или сплющенность фигуры.
Основные свойства эллипса
имеются две оси и один центр симметрии;
при равенстве полуосей линия превращается в окружность;
все точки фигуры лежат внутри прямоугольника со сторонами, равными большой и малой осям эллипса, проходящими через вершины параллельно осям.
Уравнение эллипса
Пусть линия расположена так, чтобы центр симметрии совпадал с началом координат, а оси – с осями координат.
Для составления уравнения достаточно воспользоваться определением, введя обозначение:
а – большая полуось (в наиболее простом виде её располагают вдоль оси Оx) (большая ось, соответственно, равна 2a);
c – половина фокального расстояния;
M(x;y) – произвольная точка линии.
В этом случае фокусы находятся в точках F1(-c;0); F2(c;0)
После ввода ещё одного обозначения
получается наиболее простой вид уравнения:
a 2 b 2 — a 2 y 2 — x 2 b 2 = 0,
Параметр b численно равен полуоси, расположенной вдоль Oy (a > b).
В случае (b b) формула эксцентриситета (ε) принимает вид:
Чем меньше эксцентриситет, тем более сжатым будет эллипс.
Площадь эллипса
Площадь фигуры (овала), ограниченной эллипсом, можно вычислить по формуле:
a – большая полуось, b – малая.
Площадь сегмента эллипса
Часть эллипса, отсекаемая прямой, называется его сегментом.
, где
(xo;y0) – крайняя точка сегмента.
Длина дуги эллипса
Длина дуги находится с помощью определённого интеграла по соответствующей формуле при введении параметра:
Радиус круга, вписанного в эллипс
В отличие от многоугольников, круг, вписанный в эллипс, касается его только в двух точках. Поэтому наименьшее расстояние между точками эллипса (содержащее центр) совпадает с диаметром круга:
Радиус круга, описанного вокруг эллипса
Окружность, описанная около эллипса, касается его также только в двух точках. Поэтому наибольшее расстояние между точками эллипса совпадает с диаметром круга:
Онлайн калькулятор позволяет по известным параметрам вычислить остальные, найти площадь эллипса или его части, длину дуги всей фигуры или заключённой между двумя заданными точками.
Как построить эллипс
Построение линии удобно выполнять в декартовых координатах в каноническом виде.
Строится прямоугольник. Для этого проводятся прямые:
Сглаживая углы, проводится линия по сторонам прямоугольника.
Полученная фигура есть эллипс. По координатам отмечается каждый фокус.
При вращении вокруг любой из осей координат образуется поверхность, которая называется эллипсоид.
Основные свойства эллипса
В данной публикации мы рассмотрим основные свойства эллипса, сопроводив их наглядными рисунками для лучшего восприятия представленной информации.
Примечание: определение эллипса, его основные элементы и уравнение мы рассмотрели в отдельной публикации.
Геометрические свойства эллипса
Свойство 1
Угол между касательной, проведенной к эллипсу, и фокальным радиусом r1 равняется углу между этой же касательной и фокальным радиусом r2.
Свойство 2
Уравнение касательной, проведенной к эллипсу (касание в точке M) с координатами ( xM, yM) выглядит следующим образом:
Свойство 3
Допустим эллипс пересекают две параллельные прямые. Отрезок, который соединяет середины отрезков, получившихся при пересечении прямых и эллипса, всегда будет проходит через центр фигуры.
Свойство 4
Допустим эллипс с фокусами F1 и F2 вписан в треугольник ABC.
В этом случае справедливо соотношение ниже: