Шум характеризуется какими параметрами характеризуется

Основные параметры звука (шума)

dark fb.4725bc4eebdb65ca23e89e212ea8a0ea dark vk.71a586ff1b2903f7f61b0a284beb079f dark twitter.51e15b08a51bdf794f88684782916cc0 dark odnoklas.810a90026299a2be30475bf15c20af5b

caret left.c509a6ae019403bf80f96bff00cd87cd

caret right.6696d877b5de329b9afe170140b9f935

Основные параметры звука (шума)

Частицы упругой среды, колеблясь относительно положения равновесия, создают в каждой точке звукового пространства переменное по времени давление. Разность между мгновенным значением этого давления и первоначальным значением в невозмущенной среде называется звуковым давлением Р (Па).

I= W/S

I=Р 2 /ρ∙c

Р – звуковое давление, Па

с – скорость распространения звука в среде, м/с

Величина звука также зависит от его частоты.

Поскольку звуковой диапазон частот слишком велик, для удобства расчетов используются следующие приемы:

1. весь звуковой диапазон разбивается на октавные полосы;

2. в качестве опорной точки в каждой октаве принимается средняя геометрическая частота;

3. принимается, что нижняя граница первой октавы = 45 Гц.

Для каждой октавной полосы определяется своя средняя геометрическая частота.

fср =fн∙fв.

Среднегеометрическими частотами являются 63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц.

Источник звука(шума) характеризуется звуковой мощностью

Звуковое давление, интенсивность звука и звуковая мощность являются физическими величинами, диапазон их изменения довольно широкий и поэтому в практических расчетах и при нормировании они почти не используются. Поэтому были введены специальные относительные логарифмические величины – уровни.

Уровень звукового давления:

Уровень интенсивности звука:

Уровень звуковой мощности:

P0, I0, W0 – это звуковое давление, интенсивность звука и звуковая мощность на пороге слышимости на частоте 1000 Гц.

Если в расчетную точку попадает шум от нескольких источников, складываются их интенсивности, а не уровни. Суммарный уровень интенсивности при этом составит

LIсумм = 10 ∙ lg image002

где Li – уровень шума i – го источника.

Если источники имеют одинаковый уровень

LIсумм = 10 ∙ lgN + Li,

где N- число источников

Классификация шумов

Согласно ГОСТ 12.1.003-83 и СН 2.2.4/2.1.8.562-96 шумы делятся по спектральным, временным характеристикам.

По характеру спектра шума выделяют:

· широкополосный шум с непрерывным спектром шириной более 1 октавы;

· тональный шум, в спектре которого имеются выраженные тоны. Тональный характер шума для практических целей устанавливается измерением в 1/3 октавных полосах частот по превышению уровня в одной полосе над соседними не менее чем на 10 дБ.

По временным характеристикам шума выделяют:

· постоянный шум, уровень звука которого за 8-часовой рабочий день или за время измерения в помещениях жилых и общественных зданий, на территории жилой застройки изменяется во времени не более чем на 5 дБА;

· непостоянный шум, уровень которого за 8-часовой рабочий день, рабочую смену или во время измерения в помещениях жилых и общественных зданий, на территории жилой застройки изменяется во времени более чем на 5 дБА.

Непостоянные шумы подразделяют на:

· колеблющийся во времени шум, уровень звука которого непрерывно изменяется во времени;

· прерывистый шум, уровень звука которого ступенчато изменяется (на 5дБА и более), причем длительность интервалов, в течение которых уровень остается постоянным, составляет 1 с и более;

· импульсный шум, состоящий из одного или нескольких звуковых сигналов, каждый длительностью менее 1 с, при этом уровни звука отличаются не менее чем на 7 дБА.

Источник

Параметры, характеризующие шум

ШУМ. КЛАССИФИКАЦИЯ ШУМОВ.

ПАРАМЕТРЫ, ХАРАКТЕРИЗУЮЩИЕ ШУМ

Шумом принято называть апериодические звуки различной интенсивности и частоты.

Под термином «шум» понимают любой неприятный или нежелательный звук либо их сочетание, которые мешают восприятию полезных сигналов, нарушают тишину, отрицательно влияют на организм человека, снижают его работоспособность.

Источниками акустического шума могут служить любые колебания в твёрдых, жидких и газообразных средах; в технике основные источники шума — различные двигатели и механизмы.

Классификация шумов

Почастотной характеристике различают шумы:

Октавная или третьеоктавная полоса обычно задается среднегеометрической частотой:

image001

Существует стандартный ряд среднегеометрических частот октавных полос, в которых рассматриваются спектры шумов (fсг мин = 31,5 Гц, fсг макс = 8000 Гц).

Человек ощущает звук в широком диапазоне звуковых давлений pзв (интенсивностей I).

Звуковое давление – разность между давлением, существующем в среде pср в данный момент, и атмосферным давлением pатм.

С учетом психофизического восприятия звука человеком для характеристики значений звукового давления pзв и интенсивности I были введены логарифмические величиныуровни Lуровень звукового давления и уровень интенсивности звука (с соответствующим индексом), выраженные в безразмерных единицах – децибелах, дБ, названных в честь Грейма – Бела (увеличение интенсивности звука в 10 раз соответствует 1 Белу (Б) – 1Б = 10 дБ):

strelkahead

5

Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам.

1

Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.).

6

ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между.

4

ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования.

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Источник

Основные характеристики звука и шума. Вопросы-ответы

1. Что такое громкость звука, и в каких единицах она оценивается?

Громкость звука – величина, характеризующая слуховое ощущение для данного звука. Громкость звука сложным образом зависит от звукового давления (или интенсивности звука), частоты и формы колебаний. При неизменной частоте и форме колебаний громкость растет с увеличением звукового давления. При одинаковом звуковом давлении громкость чистых тонов (гармонических колебаний) различной частоты различна, т.е. на разных частотах одинаковую громкость могут иметь звуки разной интенсивности.

Громкость данной частоты оценивают, сравнивая ее с громкостью простого тона частотой 1000 гц. Уровень звукового давления (в дБ) чистого тона с частотой 1000 гц, столь же громкого (сравнением на слух), как и измеряемый звук, называется уровнем громкости данного звука (в фонах). Громкость для сложных звуков оценивают по условной шкале в сонах.

Бел, единица логарифмической относительной величины (логарифма отношения двух одноименных физических величин), применяется в электротехнике, радиотехнике, акустике и других областях физики; обозначается «Б» или «В», названа по имени американского изобретателя телефона А. Белла. Число N белов, соответствующее отношению двух энергетических величин P1 и P2 (к которым относятся мощность, энергия, плотность энергии и т.д.), выражается формулой N = lg(P1/P2), а для «силовых» величин F1 и F2 (напряжения, силы тока, давления, напряженности поля и др.) N = 2·lg(F1/F2).

Децибел (от деци. и бел), дольная единица от бела – единицы логарифмической относительной величины (десятичного логарифма отношения двух одноименных физических величин – энергий, мощностей, звуковых давлений и др.); равна 0,1 бел. Обозначения: русское дБ, международное dB. Децибел чаще применяется на практике, чем основная единица – бел.

Фон (от греч. phone – звук), единица уровня громкости звука. В связи с тем, что на разных частотах одинаковую громкость могут иметь звуки разной интенсивности (различающиеся звуковым давлением), громкость звука оценивают, сравнивая ее с громкостью стандартного чистого тона (обычно частотой 1000 гц). 1 фон – разность уровней громкости двух звуков данной частоты, для которых равные по громкости звуки с частотой 1000 гц отличаются по интенсивности (уровню звукового давления) на 1 децибел. Для чистого тона частотой 1000 гц шкала в фонах совпадает со шкалой децибел.

2. Каковы основные количественные характеристики (единицы) звука?

Во-первых, это звуковое давление, то есть давление, дополнительно возникающее при прохождении звуковой волны в жидкой и газообразной среде. Распространяясь в среде, звуковая волна образует сгущения и разрежения, которые создают добавочные изменения давления по отношению к среднему значению давления в среде. Звуковое давление представляет собой переменную часть давления, т.е. колебания давления относительно среднего значения, частота которых соответствует частоте звуковой волны

3. В чем заключаются конструкционно-строительные мероприятия, названные звукоизоляцией?

Звукоизоляция ограждающих конструкций зданий – совокупность мероприятий по снижению уровня шума, проникающего в помещения извне.

Количественная мера звукоизоляции ограждающих конструкций, выражаемая в децибелах (дБ), называется звукоизолирующей способностью. Различают звукоизоляцию от воздушного и ударного звуков. Звукоизоляция от воздушного звука характеризуется снижением уровня этого звука (речи, пения, радиопередачи) при прохождении его через ограждение и оценивается частотной характеристикой звукоизоляции в диапазоне частот 100-3200 гц с учетом влияния звукопоглощения изолируемого помещения.

Звукоизоляция от ударного звука (шаги людей, перестановки мебели и т.п.) зависит от уровня звука, возникающего под перекрытием, и оценивается частотной характеристикой приведенного уровня звукового давления в том же диапазоне частот при работе на перекрытии стандартной ударной машины, также с учетом звукопоглощения изолируемого помещения.

Для обеспечения необходимой звукоизоляции весьма важно качество строительно-монтажных работ; даже самые незначительные щели, отверстия, трещины в конструкциях резко ухудшают шумоизоляционные свойства последних. При проектировании зданий следует учитывать, что изоляция помещений от внутренних и наружных шумов должна обеспечиваться также правильной планировкой здания, снижением уровня шума от санитарно-технического и инженерного оборудования и рациональными конструкциями ограждений. Наибольший технический и экономический эффект достигается при комплексной защите зданий от шумов.

4. Какие требования по звукоизоляции предъявляют к внутренним стенам?
5. Как повысить шумоизоляцию перекрытий?

Для повышения шумоизоляционных качеств перекрытий или для уменьшения их массы без ухудшения звукоизоляции целесообразно устраивать перекрытия раздельного типа со сплошной воздушной прослойкой или перекрытия с подвесными потолками. Для повышения звукоизоляции от ударного шума сплошных однородных перекрытий применяют полы на упругом основании или на отдельных прокладках из упругих материалов. В последние десятилетия пользуются успехом «плавающие полы».

Рекомендуется также настилать мягкие рулонные полы (например, на тепло- и шумоизоляционной основе). В качестве упругих прокладок под полы используют маты из минеральной или стеклянной ваты, древесноволокнистые плиты и т.п.

6. Каковы основные виды и функции звукопоглощающих конструкций?

Звукопоглощающие облицовки применяются для снижения энергии отраженных звуковых волн. Конструкции звукопоглощающих облицовок чаще всего состоят из слоя однородного пористого звукопоглощающего материала (иногда с фактурным слоем) или слоя пористого волокнистого материала и защитного слоя в виде перфорированного тонкого твердого экрана или покрытия. Эффективность звукопоглощающей облицовки оценивается коэффициентом звукопоглощения (КЗП) в определенном диапазоне частот (октава или 1/3 октавы). Значение КЗП зависит от способа крепления конструкции к ограждению и физических характеристик самой конструкции, главной из которых является комплексное акустическое сопротивление.

Увеличение звукопоглощения на низких частотах достигается утолщением конструкции или устройством воздушной прослойки между конструкцией и ограждением. Для обеспечения почти полного поглощения звука применяются звукопоглощающие облицовки в виде клиньев из звукопоглощающего материала, устанавливаемых перпендикулярно поверхности ограждения.

Штучные звукопоглотители обычно служат для снижения шума от технологического оборудования в производственных зданиях. Они представляют собой конструкции в виде отдельных щитов, конусов, призм и т. п., укрепляемых (подвешиваемых) в помещениях в непосредственной близости от источников шума. Эффективность штучных звукопоглотителей характеризуется значением общего звукопоглощения в м 2 на 1 штучный звукопоглотитель. Благодаря явлению дифракции волн штучные звукопоглотители имеют больший, чем звукопоглощающие облицовки, коэффициент звукопоглощения. Стенки звукопоглотителей обычно выполняются из слоя пористого волокнистого материала и защитного слоя в виде перфорированного твердого тонкого листа.

Элементы активных глушителей шума (чаще всего пластины или цилиндры) снижают шумы при распространении потока воздуха или газа; они устанавливаются преимущественно в воздуховодах аэрогазодинамических установок. Пластины могут состоять из однородных пористых звукопоглощающих материалов или слоя пористого волокнистого материала и защитного слоя из перфорированного твердого листа (обычно металла). Эффективность глушителей шума оценивается затуханием звука в децибелах (дБ) на 1 м длины глушителя и зависит от толщины пластин (диаметра цилиндров), их коэффициентом звукопоглощения и расстояния между элементами.

7. Каковы особенности поглощения звука в газах?

Поглощение звука в газах зависит от давления газа, разрежение газа эквивалентно увеличению частоты. Теплопроводность и сдвиговая вязкость в газах дают в поглощение звука вклад одного порядка величины. В жидкостях поглощение звука в основном определяется вязкостью, а вклад теплопроводности пренебрежимо мал. В большинстве жидкостей для поглощения звука существенны объемная вязкость и релаксационные процессы. Частота релаксации в жидкостях, т.е. величина wр = 1/t, как правило, очень велика и область релаксации оказывается лежащей в диапазоне высоких ультразвуковых и гиперзвуковых частот. Коэффициент поглощения звука обычно сильно зависит от температуры и от наличия примесей.

8. Каковы особенности поглощения звука в твердых телах?

В металлах, подвергнутых предварительной термообработке, а также ковке, прокатке и т.п., поглощение звука часто зависит от амплитуды звука. Во многих твердых телах при не очень высоких частотах a » w, поэтому величина добротности не зависит от частоты и может служить характеристикой потерь материала. Самое малое поглощение звука при комнатных температурах было обнаружено в некоторых диэлектриках, например в топазе, берилле, железоиттриевом гранате (a » 15 дБ/см при f = 9 Ггц).

В металлах и полупроводниках поглощение звука всегда больше, чем в диэлектриках, поскольку имеется дополнительное поглощение, связанное с взаимодействием звука с электронами проводимости. В полупроводниках это взаимодействие при определенных условиях может приводить к «отрицательному поглощению», т.е. к усилению звука. С ростом температуры поглощение звука, как правило, увеличивается. Наличие неоднородностей в среде приводит к увеличению поглощения звука. В различных пористых и волокнистых веществах поглощение звука велико, что позволяет применять их для заглушения и звукоизоляции.

9. Что такое порог слышимости?
10. Какова основная физическая характеристика уровня звука?

Физиологической характеристикой звука служит уровень его громкости в фонах. Один фон – это уровень громкости звука, для которого уровень звукового давления равногромкого с ним звука частотой 1000 Гц равен 1 дБ. Строители для оценки шума кроме децибел используют скорректированные децибелы (дБА), учитывая субъективную оценку шума человеком на разных частотах. 1 дБ = 1 дБА только на звуковой частоте 1000 Гц; чем ниже частота, тем больше разница.

11. Что такое шум?

Шум, независимо от физической природы, отличается от периодических колебаний случайным изменением мгновенных значений величин, характеризующих данный процесс. Часто шум представляет собой смесь случайных и периодических колебаний. Для описания шума применяют различные математические модели в соответствии с их временной, спектральной и пространственной структурой. Для количественной оценки шума пользуются усредненными параметрами, определяемыми на основании статистических законов, учитывающих структуру шума в источнике и свойства среды, в которой шум распространяется

12. Какими параметрами характеризуются стационарные и нестационарные шумы?

Шум подразделяются на статистически стационарные и нестационарные. Наиболее разработаны теория и методы измерения стационарного шума, классической моделью которого является белый шум.

Стационарный шум характеризуется постоянством средних параметров: интенсивности (мощности), распределения интенсивности по спектру (спектральная плотность), автокорреляционной функции (среднее по времени от произведения мгновенных значений двух шумов, сдвинутых на время задержки).

Практически ощущаемый шум, возникающий в результате действия многих отдельных независимых источников (например, шум толпы людей, моря, производственных станков, шум вихревого воздушного потока, шум на выходе радиоприемника и др.), является квазистационарным.

Шум, длящийся короткие промежутки времени (меньше, чем время усреднения в измерителях), называется нестационарным. К таким шумам относят, например, уличный шум проходящего транспорта, отдельные стуки в производственных условиях, редкие импульсные помехи в радиотехнике и т.п.

13. В чем заключается вредное воздействие шума на организм человека?

Качественные особенности ощущения при восприятии акустического шума органами слуха и организма в целом зависят от его интенсивности и спектрального состава. Вредное действие шума на организм человека проявляется в специфическом поражении органа слуха и неспецифическими изменениях других органов и систем. Имеют значение характер, уровень, частотный состав, продолжительность воздействия шума и индивидуальная чувствительность к нему.

Продолжительное влияние интенсивного шума может вызвать значительные расстройства деятельности центральной нервной системы, сосудистого тонуса, функций органов желудочно-кишечного тракта, эндокринной системы, а также постепенно развивающуюся тугоухость, обусловленную невритом преддверноулиткового нерва. Для профессиональной тугоухости характерно первоначальное нарушение восприятия высоких частот (4000-8000 гц)

14. Какие разновидности шума выделяются на практике?

Белый шум, шум, в котором звуковые колебания разной частоты представлены в равной степени, т.е. в среднем интенсивности звуковых волн разных частот примерно одинаковы, например шум водопада. Название «белый шум» введено по аналогии с белым светом, то есть светом, при разложении которого выделяются все цвета спектра.

Импульсный шум – непостоянный шум, состоящий из одного или ряда звуковых сигналов (импульсов), максимальные уровни звука которого (которых), измеренные в дБАI и дБА соответственно на временных характеристиках «импульс» и «медленно» шумомера по ГОСТ 17187, различаются между собой на 7 дБА и более.

Непостоянный шум – шум, уровень звука которого изменяется во времени более чем на 5 дБА при измерениях на временной характеристике «медленно» шумомера по ГОСТ 17187, а также шум, максимальные уровни звука которого, измеренные в дБАI и дБА соответственно на временных характеристиках «импульс» и «медленно» шумомера по ГОСТ 17187 различаются между собой на 7 и более дБА.

Постоянный шум – шум, уровень звука которого изменяется во времени не более чем на 5 дБА при измерениях на временной характеристике «медленно» шумомера по ГОСТ 17187, а также шум, максимальные уровни которого, измереные в дБАI и дБА соответственно на временных характеристиках «импульс» и «медленно» шумомера по ГОСТ 17187, различаются между собой менее чем на 7 дБА.

Проникающий шум – шум, излучаемый вне данного помещения и проникающий в него через ограждающие конструкции, системы вентиляции, водоснабжения и отопления.

Тональный шум – шум, в спектре которого имеются слышимые дискретные тона. Тональный характер шума устанавливают измерением в третьоктавных полосах частот по превышению уровня в одной полосе над соседними не менее чем на 10 дБ.

15. Каким образом измеряют характеристики шума?
16. В чем заключается принцип действия шумомера?

Чувствительность уха зависит от частоты звука, а вид этой зависимости изменяется с изменением интенсивности измеряемого шума (звука). Поэтому в шумомере имеются три комплекта фильтров, обеспечивающих нужную форму частотной характеристики при малой громкости (А)

70 фон (55-85 фон) и С – большой громкости (85-140 фон). Характеристика при большой громкости равномерна в полосе частот 30-8000 гц. Шкала А применяется также для измерения уровня громкости, выраженного в децибелах с пометкой А, при любой громкости. Величиной уровня звука в дБ (А) пользуются при нормировании громкости шума в промышленности, жилых домах и на транспорте.

Современный шумомер представляет собой компактный портативный прибор, питание которого осуществляется при помощи находящихся внутри сухих батарей. Микрофон, электронная схема и индикатор шумомера должны быть предельно устойчивы по отношению к изменениям температуры, влажности, барометрического давления, а также стабильны во времени.

Источник

Шум. Параметры, характеризующие шум. Классификация производственного шума.

Шумом называют всякий нежелательный звук. Шум как акустический процесс характеризуется с физической и физиологических сторон. С физической стороны он представляет собой явление, связанное с волнообразным распространением колебаний частиц упругой среды. с физиологической стороны он характеризуется ощущением, вызванным воздействием звуковых волн на органы слуха. Шум частотой в 1000 Гц принят за эталонный при оценке громкости. Наименьшее звуковое давление, вызывающее ощущение звука на частоте 1000 Гц называется порогом слышимости. Звуковое давление 200 Па вызывает ощущение боли в органах слуха и называется болевым порогом.

-скорость колебания частиц в воздухе окло полодения равновесия (скорость,м в сек)

-звуковое давление (в паскалях)

-интоенсивность (ватт на метр в квадрате)

1. Классификация шума по источникам возникновения 1.1 Механический шум, обусловленный колебаниями деталей машин и их взаимным перемещением. спектр механического шума занимает широкую область частот. Наличие высоких частот делают шум особо неприятным. 1.2. Аэрогидродинамические шумы возникают при движении газов и жидкостей, их взаимодействия с твердыми телами (шумы из-за периодического выпуска газа в атмосферу, например, сирена, шумы из-за образования вихрей, отрывных течений, турбулентные шумы из-за перемешивания потоков и т.п.). 1.3. Электромагнитный шум возникает в электрических машинах и оборудовании из-за взаимодействия ферромагнитных масс под влиянием переменных (во времени и в пространстве) магнитных полей, а также силы, возникающие при взаимодействии магнитных полей, создаваемых токами (т.н. пондеромоторные силы). 1.4 Гидравлические возникают при стационарных и нестационарных процессах в жидкости

Действие шума на организм. Специфическое и неспецифическое воздействие шума.

Шум-совокупность апериодических звуков различной интенсивности и частоты.С физиологической точки зрения шум-это всякий неблагоприятный воспринимаемый звук.

Инфразвук при уровне 110-150 дБ вызывает субъективн ощущения в орг-зме (нарушение ЦНС,сердечн-сосуд сист,дыхат сист и тд). Инфразвук вызывает псхо-физиологич изм-я.

Ультразвук может возд-ть начеловека через воздушн среду и контактно. Функциональн нарушения ЦНС,ССС,ДС, возможно изм-е состава крови, нарушение капиллярного кровообращ-я.

Гигиеническое нормирование производственного шума. Измерение и оценка производственного шума.

Нормирование произв шума звукового диапазона осущ-ся отд-но для пост и непост шумов. Для пост шума уст-ся предельно допустимый уровень ПДУ звука в 9ти октавных полосах со среднегеометрич значенем частот 63-8000Гц. Измерения производятся при помощи шумомера в октавном режиме в дБ.

Измеренное значение сопоставляется с ГОСТ 12.1.003-83

Непост шум нормир-ся эквивалентным по энергии уровнем звука широкополосн пост шума,оказываеющ такое же возд-е, как и непостоянный шум. Измерения производятся в режиме шумомера А без учета октавных частот в дБ.

Инфразвук нормируется в соотв-ии с санитарными нормами по предельно-допутимым нормам зв.р.

Установлено,что общий ПАУ не должен превышать 100дБ.

Ультразвук нормир-ся в соотв-ии с ГОСТ 12.1.001-89 отд-но для распространяемого воздушным путем и отд-но для контактного.

Эквивал-ым назыв-ся уровень звука постоянного широкополосного шума, который имеет тоже самое среднеквадратичное звуковое давление, что и данный непостоянный шум в течении определенного интервала времени.

Кроме эквивалентного уровня звука для непостоянного шума установлены максимальные уровни звука (дБА) – наибольшее значение уровня звука за период измерения.Допустимые уровни звукового давления находят по таблицам. Допускаются в качестве характеристики непостоянного шума использовать дозу шума. Доза шума D(Па 2 *ч) – интегральная величина, учитывающая акустическую энергию, воздействующую на чел-ка за определенный период времени: image014

Методы борьбы с шумом.

Мероприятия по борьбе с шумом

В кач-ве основоного метода исп-ся рац планировка пр-ва предприятия еще на стадии проектирования.

1 снижение шума в источнике Используются композитные материалы 2-х слойные. Снижение: 20-60 дБА.

2 изм-я направленности излучения шума.

3 Акустич обработка помещения.

Процесс поглощения звука происходит за счет перехода энергии колеблющихся частиц воздуха в теплоту. След-но, для эф-го звукопоглощения материал должен обладать пористой структурой, примеси д быть открыты со стороны падения звука и закрыты с обратной стороны. Звукопоглощающими явл-ся материалы, у кот коэф звукопоглощения на ср частотах больше 0,2. Звукопоглощающ облицовки снижают шум на 6-8 дБ в зоне отраженного звука, на 2-3 дБ вблизи самого источника.

5 Глушение шума- наушники,шлемы,и тд. При более 125 дБ исп-т противошумные костюмы (скафандры).

Источник

Справочник по обустройству дома и дачи
Adblock
detector